Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
See all formats and pricing
More options …
Volume 52, Issue 5


Screen Printing of SU-8 Layers for Microstructure Fabrication / Ar Sietspiedi Uzklātu SU-8 Pārklājumi Mikro-Struktūru Izgatavošanai

J. Klavins / G. Mozolevskis
  • LEO Research Centre, 93 Dzirnavu Str., Riga, LATVIA
  • Research Laboratory of Semiconductor Physics, Institute of Technical Physics, Riga Technical University, 3 Paula Valdena Str., Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Ozols A. / E. Nitiss / M. Rutkis
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/lpts-2015-0029


We report on a screen printing fabrication process for large-area SU-8 layers utilised for the preparation of microstructures in display devices such as microelectronic, electrowetting or bistable devices. The screen printing method has been selected for its effectiveness and simplicity over traditionally used spin-coating ones. Layers and microstructures produced thereof have shown proper homogeneity. Relationships between screen parameters to coating thickness have been established. Coating on an ITO (indium tin oxide) hydrophobic surface is possible when surface has been treated by UV/Ozone to increase its aqueous ability. To this end, the hydrophilic microstructure grids have been successfully built on a hydrophobic layer by screen printing and traditional lithography processes. Compared to conventional spin-coating methods, the screen printing method offers the advantages of simple, cheap and fast fabrication, and is especially suitable for large-area display fabrication


Rakstā aprakstīta sietspiedes metode liela izmēra SU-8 pārklājumu iegūšanai, lai izgatavotu mikrostruktūras mikroelektronikai, elektroslapināšanas un bistabilajiem ekrāniem. Sietspiede ir efektīvāka un vienkāršāka metode nekā tradicionāli izmantotā spin-coating metode. Šādiem pārklājumuiem un mikrostruktūrām ir pietiekoša homogenitāte. Tika atrasta sakarība starp sietu parametriem un pārklājumu biezumu. Pārklājumus var uzklāt uz hidrofobiskās ITO (indija alvas oksīds) virsmas, ja tā tiek apstrādāta ar UV/Ozonu, jo tas palielina ūdens slapināšanas īpašības. Tika izgatavoti hidrofīliskas mikrostruktūras režģi uz hidrofobiskas pamatnes ar sietspiedi un tradicionālo SU-8 litogrāfijas metodi. Salīdzinājumā ar tradicionālo spin-coating metodi, sietspiede ir vienkārša, lēta un ātra un ir labi piemērota liela izmēra ekrānu izgatavošanai.

Keywords: pixel walls; screen printing; SU-8


  • 1. Gelorme, J.D., Cox, R.J., and Gurrierez, S.A. (1989). Photoresist composition and printed circuit boards and packages made therewith. US4882245A.Google Scholar

  • 2. You, H., and Steck, A.J. (2013). Lightweight electrowetting display on ultrathin glass substrate. Society for Information Display, 21(5), 192-197.CrossrefWeb of ScienceGoogle Scholar

  • 3. MicroChem (2001). SU-8 Negative Tone Photoresist Formulations 50-100, Data sheets.Google Scholar

  • 4. Luurtsema, G.A. (1997). Spin Coating for Rectangular Substrates. University of California.Google Scholar

  • 5. Garcano, G., Ceriani M., and Soglio, F. Spin coating with high viscosity photo-resist on square substrates - Applications in the thin film hybrid microwave integrated circuit field. Microelectronics International, 10(3), 12-20.CrossrefGoogle Scholar

  • 6. Gale, B.K, Eddings, M.A., Sundberg, S.O., Hatch, A., Kim, J., and Ho, T. (2007). Low- Cost MEMS Technologies. Elsevier.Google Scholar

  • 7. Yue, W., Li, C.W., Xu, T., and Yang, M. (2013). Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Biosensors and Bioelectronics, 15(41), 675-683.Web of ScienceCrossrefGoogle Scholar

  • 8. Levario, T. J., Zhan, M., Lim, B., Shvartsman, S.Y., and Lu, H. (2013). Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nature America, 8(4), 721-736.Google Scholar

  • 9. Moser, Y., Forti, R., Jiguet, S., Lehnert, T., and Gijs, M. (2010). Suspended SU-8 structures for monolithic microfluidic channels. Microfluid Nanofluid, 10(1), 219-224.Web of ScienceGoogle Scholar

  • 10. Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., and Chend, D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies, 10(4), 265-268.CrossrefGoogle Scholar

  • 11. Li, Y., Xiadong, W., Chong, L., Zhifeng, L., Denan, C., and Dehui, Y. (2005). Swelling of SU-8 structure in Ni mold fabrication by UV-LIGA technique. Microsystem Technologies, 11(12), 1272-1275.Google Scholar

  • 12. Dai, W., Lian, K., and Wang, W. (2004). A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces. Microsystem Technologies, 11(7), 526-534.Google Scholar

  • 13. Dey, P., Pramanick, B., RaviShankar, A., Ganguly, P., and Das, S. (2010). Microstructuring of SU-8 resist for MEMS and bio-applications. International Journal on Smart Sensing and Intelligent Systems, 3(1), 118-129.Google Scholar

  • 14. Mao, X., Yang, J., Ji, A., and Yang, F. (2013). Two new Methods to Improve the Lithography Precision for SU-8 Photoresist on Glass Substrate. Journal of Microelectromechanical Systems, 22(1), 124-130.Web of ScienceCrossrefGoogle Scholar

  • 15. Ahani, A., Saadati-Fard, L., Sodagar, A. M., and Boroumad F. A. (2011). Flexible PET/ ITO Electrode Array for Implantable Biomedical Applications. 33rd Annual International Conference of the IEEE EMBS, 30 August-03 September 2011, (2878-81), Boston, IEEE.Google Scholar

  • 16. Li, P.C.H. (2005). Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. Boca Raton, FL. CRC Press.Google Scholar

  • 17. Handbook Tech Tips for Screen Printers. (2001). USA: SaatiPrint.Google Scholar

  • 18. Campo, A., and Greiner, C. (2007). SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of Micromechanics and Microengineering, 17(6). 81-95.Web of ScienceCrossrefGoogle Scholar

  • 19. Bikerman, J. (1941). Method of measuring contact angles. Ind. Eng. Chem. Anal. Ed., 13(6), 443-444.CrossrefGoogle Scholar

  • 20. SU-8 2000 Permanent Epoxy negative photoresist Processing guidelines for SU-8 2100 and SU8-2150. MicroChem.Google Scholar

  • 21. Lide, D.R. (2005). CRC Handbook of Chemistry and Physics. CRC Press.Google Scholar

  • 22. Willfahrt, A., and Stephens, J. (2010). Optimizing stencil thickness and ink film deposit. International Circular of Graphic Education and Research, 6-17.Google Scholar

  • 23. Sarl, G. (2007). GM 1075 Technical Datasheet.Google Scholar

  • 24. Atthi, N., Nimittrakoolchai, O., Jeamsaksiri, W., Supothina, S., Hruanun, C., and Poyai, A. (2009). Study of optimization condition for spin coating of the photoresist film on rectangular substrate by taguchi design of an experiment. Songlanakarin Journal of Science and Technology, 31(3), 331-335.Google Scholar

  • 25. Snodgrass, T., and Newquist, C. (1994). Extrusion coating of polymers for next generation, large-area FPD manufacturing. Society for Information Display, 40-45.Google Scholar

About the article

Published Online: 2015-11-26

Published in Print: 2015-10-01

Citation Information: Latvian Journal of Physics and Technical Sciences, Volume 52, Issue 5, Pages 58–67, ISSN (Online) 0868-8257, DOI: https://doi.org/10.1515/lpts-2015-0029.

Export Citation

© by J. Klavins. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in