Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
See all formats and pricing
More options …
Volume 53, Issue 6


Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

O. Vilitis / M. Rutkis
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga, LV-1063, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Busenbergs
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga, LV-1063, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Merkulovs
Published Online: 2017-01-25 | DOI: https://doi.org/10.1515/lpts-2016-0045


The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

Keywords: Kelvin probe; contact potential difference; surface potential


  • 1. Vilitis, O., Rutkis, M., Busenbergs, J., and Merkulovs, D. (2016). Determination of contact potential difference by the Kelvin probe (Part I). 1. Basic principles of measurements probe. Latv. J. Phys. Techn. Sci., 2, 48–57.Google Scholar

  • 2. Palevsky, H., Swank, R.K., and Grenchik, R. (1947). Design of dynamic condenser electrometers. Rev. Sci. Instrum, 18, 298–314.CrossrefGoogle Scholar

  • 3. Mitchinson, J.C., Prongle, R.D., and Farvis, W.E.J. (1971). Surface potential measurement using a rotating dynamic capacitor. J.phys., E 4, 525–529.Google Scholar

  • 4. Petit-Cloerc, Y., and Carette, J.D. (1968). New feedback Kelvin probe. Rev. Sci. Instrum., 38, 933–934.CrossrefGoogle Scholar

  • 5. Blott, B.H., and Lee, T.J. (1969). A two frequency vibrating capacitor method for contact potential diference measurements. J. Phys., 2, 785–788.Google Scholar

  • 6. Maljusch, A. (2012). Integrated scanning Kelvin probe – Scanning electrochemical microscopy system: Design, development and applications. Diss. 1–245.Google Scholar

  • 7. Ritty, B., Wahtel, Ott, F., Manquenouille, R., and Donnet, J.B. (1980). New application of the Kelvin method involving the scanning of the bucking voltage. Rev. Sci. Instrum., 51 (10), 1421–1423.Google Scholar

  • 8. Baikie, I.D., van der Werf, K.O., Broeze, J., and van Silfhout, A. (1989). Automatic Kelvin probe compatible with ultrahigh vacuum. Rec. Sci. Instrum. 60, 930.CrossrefGoogle Scholar

  • 9. KP Technology. USA Inc. Available at www.kelvinprobe.comGoogle Scholar

  • 10. Vilitis, O., Fonavs, E., and Muzikante, I. (2001). A system for measuring surface potential by the Kelvin-Zisman vibrating capacitor probe. Latv. J. Phys. Techn. Sci., 5, 38–56.Google Scholar

  • 11. Rossi, F. (1992). Contact potential measurement: The preamplifier. Rev Sci. Instr., 63 (7), 3744–3751.CrossrefGoogle Scholar

  • 12. Neufeld, A.K., Bond, A.M., and Cole, I.S. (2003). Construction and operation of a Kelvin probe instrument. Chapter 3, 29–88.Google Scholar

  • 13. Hansen, W.N., and Johnson, K.B. (1994). Work function measurements in gas ambient. Surface Science, 316, 373–382.Google Scholar

  • 14. Toda, K., Ochi, K., and Sanemasa, I. (1996). Non-sensing properties of Au thin film. Sensors and Actuators, B 32, 15–18.CrossrefGoogle Scholar

  • 15. Ostrick, B. (2000). Die Untersuchung der Karbonat – Kohlendioxid – Wechselwirkung im Feuchtefilm der Oberfläche. Diss. 1 – 131.Google Scholar

About the article

Published Online: 2017-01-25

Published in Print: 2016-12-01

Citation Information: Latvian Journal of Physics and Technical Sciences, Volume 53, Issue 6, Pages 57–66, ISSN (Online) 0868-8257, DOI: https://doi.org/10.1515/lpts-2016-0045.

Export Citation

© 2016 O. Vilitis et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in