Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2016: 0.161
Source Normalized Impact per Paper (SNIP) 2016: 0.368

Open Access
Online
ISSN
1857-7415
See all formats and pricing
More options …

Highlights on Artificial Insemination (AI) Technology in the Pigs

Tarek Khalifa
  • Corresponding author
  • EquiBiotech Inc-Research Services in Farm Animal Breeding, 19 Gravias Street P.O. Box 54645, Thessaloniki, Greec e
  • Veterinary Research Institute, Hellenic Agricultural Organization, 57001 NAGREF Campus, Thermi, P.O. Box 60272, Thessaloniki, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Constantinos Rekkas
  • Veterinary Research Institute, Hellenic Agricultural Organization, 57001 NAGREF Campus, Thermi, P.O. Box 60272, Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Foteini Samartzi
  • Veterinary Research Institute, Hellenic Agricultural Organization, 57001 NAGREF Campus, Thermi, P.O. Box 60272, Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aristotelis Lymberopoulos
  • Alexander Technological Educational Institute, Department of Animal Production, P.O. Box 141 Sindos, Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kostas Kousenidis
  • Alexander Technological Educational Institute, Department of Animal Production, P.O. Box 141 Sindos, Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Toni Dovenski
  • Ss. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine, Institute of Reproduction, Lazar Pop Trajkov 5-7, 1000 Skopje, R. Macedonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-18 | DOI: https://doi.org/10.14432/j.macvetrev.2013.09.001

Abstract

Over the past decade, there has been a tremendous increase in the development of field AI services in the majority of countries concerned with pig production. The objective of this paper is to review: (a) the current status of swine AI in the world, (b) significance and limitation of AI with liquid and frozen semen, (c) the biological traits of porcine semen in relation to in vitro sperm storage, (d) the criteria used for selection of a boar stud as a semen supplier, (e) how to process boar semen for liquid and frozen storage in the commercial settings and (f) how to improve fertility and prolificacy of boar semen. More than 99% of the inseminations conducted worldwide are made with liquid-stored semen. AI with frozen semen is used only for upgrading the genetic base in a particular country or herd. Determining the initial quality of semen ejaculates along with the selection of the optimum storage extender has a profound effect on the quality and fertility of AI doses. Different procedures have been used for improving the fertility of preserved spermatozoa including colloidal centrifugation of the semen, intrauterine insemination and modulation of the uterine defense mechanism after AI. Development of an efficient protocol for synchronizing the time of ovulation in sows and gilts coupled with improving uterine horn insemination technique will make a breakthrough in the commercial use of frozen boar semen.

Keywords: boar; semen storage; artificial insemination; fertility

References

  • 1. Broekhuijse, M.L., Feitsma, H., Gadella B.M. (2012). Artificial insemination in pigs: predicting male fertility. Vet Q 32: 151-157 CrossrefGoogle Scholar

  • 2. Johnson, L.A., Weitze K.F., Fiser, P., Maxwell, W.M.C. (2000). Storage of boar semen. Anim Reprod Sci 62: 143-172.CrossrefGoogle Scholar

  • 3. Riesenbeck, A. (2011). Review on international trade with boar semen. Reprod Domest Anim 46 (Suppl. 2): 1-3.CrossrefGoogle Scholar

  • 4. Sigleton, W.L. (2001). State of the art in artificial insemination of pigs in the United States. Theriogenology 56: 1305-1310.CrossrefGoogle Scholar

  • 5. Knox, R., Levis, D., Safranski, T., Singleton, W. (2008). An update on North American boar stud practices. Theriogenology 70: 1202-1208.CrossrefGoogle Scholar

  • 6. Feitsma, H. (2009). Artificial insemination in pigs, research and developments in The Netherlands, a review. Acta Scientiae Veterinariae 37 (Suppl. 1): 61-71.Google Scholar

  • 7. Broekhuijse, M.L.W.J., Feitsma, H., Gadella, B.M. (2011). Field data analysis of boar semen quality. Reprod Domest Anim 46 (Suppl. 2): 59-63.CrossrefGoogle Scholar

  • 8. Vyt, P., Maes, D., Rijsselaere, T., Dewulf, J., De Kruif, A., Van Soom, A. (2007). Semen handling in porcine AI centers: the Belgian situation. Vlaams Diegeneeskundig Tijdschrift 76: 195-199.Google Scholar

  • 9. López Rodríguez, A., Rijsselaere, T., Vyt, P., Van Soom, A., Maes, D. (2012). Effect of dilution temperature on boar semen quality. Reprod Domest Anim 47: 63-66.CrossrefGoogle Scholar

  • 10. Martinez, E.A., Vazquez J.M., Roca, J., Cuello, C., Gil, M.A., Parrilla, I., Vazquez, J.L. (2005). An update on reproductive technologies with potential short-term application in pig production. Reprod Domest Anim 40: 300-309.CrossrefGoogle Scholar

  • 11. Roca, J., Parrilla, I., Rodriguez-Martinez, H., Gil, M.A., Cuello, C., Vazquez J.M., Martinez, E.A. (2011). Approaches towards efficient use of boar semen in the pig industry. Reprod Domest Anim 46 (Suppl. 2): 79-83.CrossrefGoogle Scholar

  • 12. Gadea, J. (2003). Review: semen extenders used in the artificial insemination of swine. Spanish J Agric Res 1 (2): 17-27.CrossrefGoogle Scholar

  • 13. Waberski, D., Henning, H., Petrunkina, A.M. (2011). Assessment of storage effects in liquid preserved boar semen. Reprod Domest Anim 46 (Suppl. 2): 45-48.CrossrefGoogle Scholar

  • 14. Goldberg, A.M., Argenti, L.E., F accin, J.E., Linck, L., Santi, M., Bernardi, M.L., Cardoso, M.R., Wentz, I., Bortolozzo, F.P. (2013). Risk factors for bacterial contamination during boar semen collection. Res Vet Sci (In press), doi: 10.1016/j.rvsc.2013.06.022.CrossrefGoogle Scholar

  • 15. Dziuk, P.J., Henshaw, G. (1958). Fertility of boar semen artificially inseminated following in vitro storage. J Anim Sci 17: 554-558.Google Scholar

  • 16. First, N.L., Stratman, F.W., Casida, L.E. (1963). Effect of sperm age on embryo survival in swine. J Anim Sci 22: 135-138. Google Scholar

  • 17. Pursel, V.G., Johnson, L.A., Schulman, L.L. (1973). Fertilizing capacity of boar semen stored at 15oC. J Anim Sci 37: 532-535.Google Scholar

  • 18. Bailey, J.L., Lessard, C., Jacques, J., Bréque, C., Dobrinski, I., Zeng, W., Galantino-Homer, H.L. (2008). Cryopreservation of boar semen and its future importance to the industry. Theriogenology 70: 1251-1259.CrossrefGoogle Scholar

  • 19. Großfeld, R., Sieg, B., Struckmann, C., Franzel, A., Maxwell, W.M.C., Rath, D. (2008). New aspects of boar semen freezing strategies. Theriogenology 70: 1225-1233.CrossrefGoogle Scholar

  • 20. Knox, R.V. (2011). The current value of frozenthawed boar semen for commercial companies. Reprod Domest Anim 46 (Suppl. 2): 4-6.CrossrefGoogle Scholar

  • 21. Khalifa, T.A.A., Tsakmakidis, I.A. (2012). A preliminary study on preservability of porcine semen in INRA-96 extender. Proceeding of the 17th International Congress on Biotechnology in Animal Reproduction (ICBAR), 12th to 14th September, Leipzig, Anhalt University of Applied Sciences, Germany.Google Scholar

  • 22. Mozo-Martín, R., Gil, L., Gómez-Rincón, C.F., Dahmani, Y., García-Tomás, M., Úbeda, J.L., Grandía, J. (2012). Use of a novel double uterine deposition artifi cial insemination technique using low concentrations of sperm in pigs. Vet J 193: 251-256.CrossrefGoogle Scholar

  • 23. AAlbers, J.G., Mann, T., Polge, C. (1961). Metabolism of boar semen in relation to sperm motility and survival. J Reprod Fertil 2: 42-53.CrossrefGoogle Scholar

  • 24. Shelby, D.R., Foley, C.W. (1971). Influence of atmosphere and incubation temperature on the metabolism of washed boar spermatozoa. J Anim Sci 32: 103-106.Google Scholar

  • 25. Jones, A.R. (1997). Metabolism of lactate by mature boar spermatozoa. Reprod Fertil Dev 9: 227-232.CrossrefGoogle Scholar

  • 26. Jones, A.R. (1997). Triosephosphate metabolism by mature boar spermatozoa. Reprod Fertil Dev 9: 577-581.CrossrefGoogle Scholar

  • 27. Jones, A.R., Connor, D.E. (2000). Fructose metabolism by mature boar spermatozoa. Reprod Fertil Dev 12: 355-359.CrossrefGoogle Scholar

  • 28. Marin, S., Chiang, K., Bassilian, S., Lee, W-N.P., Boros, L.G., Fernández-Novell, J.M., Centelles, J.J., Medrano, A., Rodriguez-Gil, J.E., Cascante, M. (2003). Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Letters 554: 342-346.CrossrefGoogle Scholar

  • 29. Medrano, A., Fernández-Novell, J.MA., Ramió, L., Alvarez, J., Goldberg, E., Rivera, MA. M., Guinovart, J.J., Rigau, T., Rodríguez-Gil, J.E. (2006). Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol Reprod Dev 73: 369-378. CrossrefGoogle Scholar

  • 30. White, I.G. (1993). Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 5: 639-658.CrossrefGoogle Scholar

  • 31. Galantino-Homer, H.L., Zeng, W-X., Omgee, S.O., Dallmeyer, M., Voelkl, D., Dobrinski, I. (2006). Effects of 2-hydroxypropyl-β-cyclodextrin and cholesterol on porcine sperm viability and capacitation status following cold shock or incubation. Mol Reprod Dev 73: 638-650.CrossrefGoogle Scholar

  • 32. Blanch, E., Tomás, C., Graham, J.K., Mocé, E. (2012). Response of boar sperm to the treatment with cholesterol-loaded cyclodextrins added prior to cryopreservation. Reprod Deomest Anim 47: 959-964.CrossrefGoogle Scholar

  • 33. Tomás, C., Blanch, E., Cebián, B., Mocé, E. (2013). In vivo fertilizing ability of frozen-thawed boar sperm treated with cholesterol-loaded cyclodextrins prior to cryopreservation. Anim Reprod Sci 140: 77-82.CrossrefGoogle Scholar

  • 34. Mann, T., Lutwak-Mann, C. (1981). Male reproductive function and semen. Themes and trends in physiology, biochemistry and investigative andrology. Springer-Verlag, Berlin, Heildelberg, New York.Google Scholar

  • 35. Rodríguez-Martínez, H., Kvist, U., Saravia, F., Wallgren, M., Johannisson, A., Sanz, L., Peña, F.J., Martínez, E.A., Roca, J., Vázquez, J.M., Calvete, J.J. (2009). The physiological roles of the boar ejaculate. Soc Reprod Fertil Suppl. 66: 1-21.Google Scholar

  • 36. Pursel, V.G., Johnson, L.A., Rampacek, G.B. (1972). Acrosome morphology of boar spermatozoa incubated before cold shock. J Anim Sci 34: 278-283.Google Scholar

  • 37. Pursel, V.G., Johnson, L.A., Schulman, L.L. (1973). Effect of dilution, seminal plasma and incubation period on cold shock susceptibility of boar spermatozoa. J Anim Sci 37: 528-531.PubMedGoogle Scholar

  • 38. Juarez, J.D., Parrilla, I., Vazquez, J.M., Martinez, E.A., Roca, J. (2011). Boar semen can tolerate rapid cooling rates prior to freezing. Reprod Fertil Dev 23: 681-690.CrossrefGoogle Scholar

  • 39. Althouse, G.C., Wilson, M.E., Kuster,C., Parsley, M. (1998). Characterization of lower temperature storage limitations of fresh-extended porcine semen. Theriogenology 50: 535-543.CrossrefGoogle Scholar

  • 40. Paulenz, H., Kommisrud, E., Hofmo, P.O. (2000). Effect of long-term storage at different temperatures on the quality of liquid boar semen. Reprod Domest Anim 35: 83-87.CrossrefGoogle Scholar

  • 41. Mann, T. (1964). The biochemistry of semen and of the male reproductive tract. London: Mathuen & Co LTD, New York: John Wiley & Sons Inc.Google Scholar

  • 42. Althouse, G.C., Pierdon, M.S., Lu, K.G. (2008). Thermotemporal dynamics of contaminant bacteria and antimicrobials in extended porcine semen. Theriogenology 70: 1317-1323. CrossrefGoogle Scholar

  • 43. Schilling, E., Vengust, M. (1987). Frequency of semen collection in boars and quality of ejaculates as evaluated by the osmotic resistance of acrosomal membranes. Anim Reprod Sci 12: 283-290.CrossrefGoogle Scholar

  • 44. Arkins, S., Thomposon, L.H., Giles, J.R., Camacho, T., Hosmon, B.D. (1988). The effect of collection procedure on the sperm output and copulatory behavior of AI stud boars. Anim Reprod Sci 16: 277-283.CrossrefGoogle Scholar

  • 45. Frangež, R., Gider,T., Kosec, M. (2005). Frequency of boar ejaculate collection and its influence on semen quality, pregnancy rate and litter size. Acta Vet Brno 74: 265-273.CrossrefGoogle Scholar

  • 46. Aneas, S.B., Gary, B.G., Bouvier, B.P. (2008). Collectis® automated boar collection technology. Theriogenology 70: 1368-1373.CrossrefGoogle Scholar

  • 47. Thacker, B.J., Larsen, R.E., Joo, H.S., Leman, A.D. (1984). Swine diseases transmissible with artificial insemination. J Am Vet Med Assoc 185: 511-516.Google Scholar

  • 48. Althouse, G.C., Kuster, C.E., Clark, S.G., Weisiger, R.M. (2000). Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53: 1167-1176.CrossrefGoogle Scholar

  • 49. Althouse, G.C., Kristina, G. Lu. (2005). Bacteriospermia in extended porcine semen. Theriogenology 63: 573-584.CrossrefGoogle Scholar

  • 50. Martín, L.O.M., Muñoz, , E.C., De Cupere, F., Van Driessche, E., Echemendia-Blanco, D., Rodríguez, J.M.M., Beeckmans, S. (2010). Bacterial contamination of boar semen affects the litter size. Anim Reprod Sci 120: 95-104.CrossrefGoogle Scholar

  • 51. Bussalleu, E., Yeste, M., Sepúlveda, L., Torner, E., Pinart, E., Bonet, S. (2011). Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim Reprod Sci 127: 176-182.CrossrefGoogle Scholar

  • 52. Schautteet, K., De Clercq, E., Miry, C., Van Groenweghe, F., Delava, P., Kalmar, I., Vanrompay, D. (2013). Tetracycline-resistant Chlamydia suis in cases of reproductive failure on Belgian, Cypriote and Israeli pig production farms. J Med Microbiol 62 (Pt 2): 331-334.CrossrefGoogle Scholar

  • 53. Bamba, K., Sone, M. (1981). Factors affecting the quality of boar semen stored by means of dialysis. J Reprod Fert 62: 193-197.CrossrefGoogle Scholar

  • 54. Sone, M., Ohmura, K., Bamba, K. (1982). Effects of various antibiotics on the control of bacteria in boar semen. Vet Rec 111: 11-14.CrossrefGoogle Scholar

  • 55. Okazaki, T., Mihara, T., Fujita, Y., Yoshida, S., Teshima, H., Shimada, M. (2010). Polymixin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. Theriogenology 74: 1691-1700.CrossrefGoogle Scholar

  • 56. Waberski, D., Weitze, K.F., Meding, S., Leiding, C., Weiskopf, S. (1990) Examination on sperm and fertility compatibility of Lincospectin® sterile solution as antibiotic additive in liquid boar semen. Reprod Domest Anim 25: 291-295.CrossrefGoogle Scholar

  • 57. Morrell, J.M., Wallgren, M. (2011). Removal of bacteria from boar ejaculates by single layer centrifugation can reduce the use of antibiotics in semen extenders. Anim Reprod Sci 123: 64-69.CrossrefGoogle Scholar

  • 58. Morrell, J.M., Wallgren, M. (2011). Colloid centrifugation of boar semen. Reprod Domest Anim 46 (Suppl. 2): 18-22.CrossrefGoogle Scholar

  • 59. Rigau, T., Piedrafita, J., Reverter, A., Canal, M., Rodríguez-Gil, J.E. (1996). The rate of L-lactate production: a feasible parameter for the fresh boar semen quality analysis. Anim Reprod Sci 43: 161-172.CrossrefGoogle Scholar

  • 60. Kamp, G., Büsselmann, G., Jones, N., Wiesner, B., Lauterwein, J. (2003). Energy metabolism and intracellular pH in boar spermatozoa. Reproduction 126: 517-525.CrossrefGoogle Scholar

  • 61. Ford, W.C.L. (2006). Glycolysis and sperm motility: does a spoon of sugar help the flagellum go round? Hum Reprod Update 12: 269-274.CrossrefGoogle Scholar

  • 62. Vyt, P., Maes, D., Sys, S.U., Rijsselaere, T., Van Soom, A. (2007). Air contact influences the pH of extended porcine semen. Reprod Domes Anim 42: 218-220.CrossrefGoogle Scholar

  • 63. Storey, B.T. (2008). Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol 52: 427-437.CrossrefGoogle Scholar

  • 64. Bucci, D., Isani, G., Spinaci, M., Tamanini, C., Mari, G., Zambelli, D., Galeati, G. (2010). Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Doest Anim 45: 365.Google Scholar

  • 65. Bucci, D., Rodriguez-Gil, J.E., Vallorani, C., Spinaci, M.,Galeati, G., Tamanini, C. (2011). GLUTs and mammalian sperm metabolism. J Androl 32: 348-355.CrossrefGoogle Scholar

  • 66. Purdy, P.H., Tharp, N., Stewart, T., Spiller, S.F., Blackburn, H.D. (2010). Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics. Theriogenology 74: 1304-1310.CrossrefGoogle Scholar

  • 67. Bonet, S. (1990). Immature and aberrant spermatozoa in the ejaculate of Sus domesticus. Anim Reprod Sci 22: 67-80.CrossrefGoogle Scholar

  • 68. Briz, M.D., Bonet, S., Pinart, B., Egozcue, J., Camps, R. (1995). Comparative study of boar sperm coming from the caput, corpus, and cauda regions of the epididymis. J Androl 16: 175-187.Google Scholar

  • 69. Harayama, H., Shibukawa, T., Miyake, M., Kannan, Y., Kato, S. (1996). Fructose stimulates shedding of cytoplasmic droplets from epididymal boar spermatozoa. Reprod Fertil Dev 8: 1039-1043. CrossrefGoogle Scholar

  • 70. Vyt, P., Maes, D., Dejonckheere, E., Castryck, F., Van Soom, A. (2004). Comparative study on five different commercial extenders for boar semen. Reprod Domest Anim 39: 8-12.CrossrefGoogle Scholar

  • 71. Gilmore, J.A., Du, J., Tao, J., Peter, A.T., Critser, J.K. (1996). Osmotic properties of boar spermatozoa and their relevance to cryopreservation. J Reprod Fertil 107: 87-95.CrossrefGoogle Scholar

  • 72. Fraser, L., Gorszczaruk, K., Strzeźek, J. (2001). Relationship between motility and membrane integrity of boar spermatozoa in media varying in osmolality. Reprod Domest Anim 36: 325-329.CrossrefGoogle Scholar

  • 73. Yeste, M., Briz, M., Pinart, E., Sílvia, S., Bussalleu, E., Bonet, S. (2010). The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Anim Reprod Sci 119: 265-274.CrossrefGoogle Scholar

  • 74. Marcos, C.P., Sanchez, R., Palacio, M., Pursel, V.G., Garcia, T.P., Rillo, S.M. (1991). Effects of dilution rate on the motility and acrosome morphology of boar spermatozoa stored at 15oC. Reprod Domest Anim 26: 112-116.CrossrefGoogle Scholar

  • 75. Maxwell, W.M.C., Johnson, L.A. (1999). Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. Theriogenology 52: 1353-1362.CrossrefGoogle Scholar

  • 76. Harrison, R.A.P., Dott, H.M., Foster, G.C. (1978). Effect of ionic strength, serum albumin and other macromolecules on the maintenance of motility and the surface of mammalian spermatozoa in a simple medium. J Reprod Fert 52: 65-73.CrossrefGoogle Scholar

  • 77. Waberski, D., Meding, S., Dirksen, G., Weitze, K.F., Leiding, C., Hahn, R. (1994). Fertility of long-termstored boar semen: influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36: 145-151.CrossrefGoogle Scholar

  • 78. Dziuk, P.J., Henshaw, G. (1959). Fertility of boar semen artificially inseminated following in vitro storage. J Anim Sci 17: 554-558.Google Scholar

  • 79. Baker, R.D., Dziuk, P.J., Norton, H.W. (1968). Effect of volume of semen, number of sperm and drugs on transport of sperm in artificially inseminated gilts. J Anim Sci 27: 88-93.Google Scholar

  • 80. Johnson, L.A., Aalbers, J.G., Willems, C.M.T., Rademaker, J.H.M., Rexroad, C.E. Jr. (1982). Use of boar spermatozoa for artificial insemination III. Fecundity of boar spermatozoa stored in Beltsville liquid and Kiev extenders for three days at 18oC. J Anim Sci 54: 132-136.Google Scholar

  • 81. Johnson, L.A., Aalbers, J.G., Grooten, H.J.G. (1988). Artificial insemination of swine: fecundity of boar semen stored in Beltsville TS (BTS), modified modina (MM), or MA-A and inseminated on one, three and four days after collection. Zuchthyg 23: 49-55.CrossrefGoogle Scholar

  • 82. Waberski, D., Weitze, K.F., Lietmann, C., Lübbert zur Large, W., Bortolozzo, F.P., Willmen, T., Petzoldt, R. (1994). The initial fertilizing capacity of long term-stored liquid boar semen pre- and postovulatory insemination. Theriogenology 41: 1367-1377.CrossrefGoogle Scholar

  • 83. Soede, N.M., Wetzels, C.C.H., Zondag, W., de Koning, M.A.I., Kemp, B. (1994). Effects of time of insemination relative to ovulation, as determined by ultrasonography, on fertilization rate and accessory sperm count in sows. J Reprod Fertil 104: 99-106.Google Scholar

  • 84. Soede, N.M., Wetzels, C.C.H., Zondag, W., Hazeleger, W., Kemp, B. (1994). Effects of a second insemination after ovulation on fertilization rate and accessory sperm count in sows. J Reprod Fertil 105: 135-140.Google Scholar

  • 85. Nissen, A.K., Soede, N.M., Hyttel, P., Schmidt, M., D’Hoore, L. (1997). The influence of time of insemination relative to time of ovulation on farrowing frequency and litter size in sows, as investigated by ultrasonography. Theriogenology 47: 1571-1582.CrossrefGoogle Scholar

  • 86. Steverink, D.W. B., Soede, N.M., Bouwman, E.G., Kemp, B. (1998). Semen backflow after insemination and its effect on fertilization results in sows. Anim Reprod Sci 54: 109-119.CrossrefGoogle Scholar

  • 87. Kuster, C.E., Althouse, G.C. (1999). The fecundity of porcine semen stored for 2 to 6 days in Androhep® and X-CellTM extenders. Theriogenology 52: 365-376.CrossrefGoogle Scholar

  • 88. Foote, R.H. (2002). Within-herd use of boar semen at 5oC, with a note on electronic monitoring of estrus. Reprod Domest Anim 37: 61-63.Google Scholar

  • 89. Watson, P.F., Behan, J.R. (2002). Intrauterine insemination of sows with reduced sperm numbers: results of a commercially based field trial. Theriogenology 57: 1683-1693.CrossrefGoogle Scholar

  • 90. Haugan, T., Gaustad, A.H., Reksen, O., Gröhn, Y.T., Hofmo, P.O. (2007). Fertility results of artificial inseminations performed with liquid boar semen stored in X-CellTM vs. BTS extender. Reprod Domest Anim 42: 94-99.CrossrefGoogle Scholar

  • 91. Wolf, J., Smital, J. (2009). Quantification of factors affecting semen traits in artificial insemination boars from animal model analyses. J Anim Sci 87: 1620-1627.CrossrefGoogle Scholar

  • 92. Stančić, B., Radović, I., Stančić, I., Dragin, S., Boźić, A., Gvozdić, D. (2010). Fertility of sows after intracervical or intrauterine insemination with different spermatozoa number in reduced volume doses. Acta Veterinaria (Beograd) 60: 257-262.CrossrefGoogle Scholar

  • 93. Weitze, K.F., Wagner-Rietschel, H., Waberski, D., Richter, L., Krieter, J. (1994). The onset of heat after weaning, heat duration, and ovulation as major factors in AI timing in sows. Reprod Domest Anim 29: 433-443.CrossrefGoogle Scholar

  • 94. Koketsu, Y., Dial, G.D., King, V.L. (1997). Returns to service after mating and removal of sows for reproductive reasons from commercial swine farms. Theriogenology 47: 1347-1363.CrossrefGoogle Scholar

  • 95. de Kruif, A. (2003). Fertility and sterility in domestic animals. Verh K Geneeskd Bleg 65: 189-202. Google Scholar

  • 96. Sancho, S., Pinart, E., Briz, M., Garcia-Gil, N., Badia, E., Bassols, J., Kádár, E., Pruneda, A., Bussalleu, E., Yeste, M., Coll, M.G., Bonet, S. (2004). Semen quality of postpubertal boars during increasing and decreasing natural photoperiods. Theriogenology 62: 1271-1282.CrossrefGoogle Scholar

  • 97. Einarsson, S., Brandt,Y., Lundeheim, N., Madej, A. (2008). Stress and its influence on reproduction in pigs: a review. Acta Vet Scand 50:48. doi: 10.1186/1751-0147-50-48 (http:// www.actavetscand.com/content/50/1/48).CrossrefGoogle Scholar

  • 98. Sonderman, J.P., Luebbe, J.J. (2008). Semen production and fertility issues related to differences in genetic lines of boars. Theriogenology 70: 1380-1383.CrossrefGoogle Scholar

  • 99. Huang, Y.H., Lo, L.L., Liu, S.H., Yang, T.S. (2010). Age-relating changes in semen quality characteristics and expectations of reproductive longevity in Duroc boars. Anim Sci J 81: 432-437.CrossrefGoogle Scholar

  • 100. Tsakmakidis, I.A., Khalifa, T.A.A., Boscos, C.M. (2012). Age-related changes in quality and fertility of porcine semen. Biol Res 45: 381-386.CrossrefGoogle Scholar

  • 101. Khalifa, T., Rekkas, C., Tsakmakidis, I., Zdragas, A., Samartzi, F., Lymberopulos, A. (2012). Long-term storage of porcine spermatozoa in chemically defi ned extenders. Reprod Domest Anim 47 (Suppl. 5): 91 (abstract P83).Google Scholar

  • 102. Hood, R.D., Foley, C.W., Martin, T.G. (1970). Effects of cold shock, dilution, glycerol and dimethyl sulfoxide on cation concentrations in porcine spermatozoa. J Anim Sci 30: 91-94.Google Scholar

  • 103. Watson, P.F. (1995). Recent development and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev 7: 871-891.CrossrefGoogle Scholar

  • 104. Bamba, K., Cran, D.G. (1985). Effect of rapid warming of boar semen on sperm morphology and physiology. J Reprod Fert 75: 133-138.CrossrefGoogle Scholar

  • 105. Bamba, K., Cran, D.G. (1988). Further studies on rapid dilution and warming of boar semen. J Reprod Fert 82: 509-518.CrossrefGoogle Scholar

  • 106. Safranski, T.J., Ford, J.J., Rohrer, G.A., Guthrie, H.D. (2011). Genetic selection for freezability and its controversy with selection for performance. Reprod Domest Anim 46 (Suppl. 2): 31-34.CrossrefGoogle Scholar

  • 107. Benson, R.W., Pickett, B.W., Komarek, R.J., Lucas, J.J. (1967). Effect of incubation and cold shock on motility of boar spermatozoa and their relationship to lipid content. J Anim Sci 35: 580-584.Google Scholar

  • 108. Pursel, V.G., Johnson, L.A., Schulman, L.L. (1972). Interaction of extender composition and incubation period on cold shock susceptibility of boar spermatozoa. J Anim Sci 35: 580-584.Google Scholar

  • 109. Tamuli, M.K., Watson, P.F. (1994). Cold resistance of live boar spermatozoa during incubation after ejaculation. Vet Rec 135: 160-162.CrossrefGoogle Scholar

  • 110. Eriksson, B.M., Vazquez, J.M., Martinez, E.A., Roca, J., Lucas, X., Rodriguez-Martinez, H. (2001). Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and in vitro oocyte penetration ability of frozen-thawed boar spermatozoa. Theriogenology 55: 1593-1605.CrossrefGoogle Scholar

  • 111. Casas, I., Althouse, G.C. (2013). The protective effect of a 17oC holding time on boar sperm plasma membrane fluidity after exposure to 5oC. Cryobiology 66: 69-75.Google Scholar

  • 112. Berger, T., Clegg, E.D. (1985). Effect of male accessory gland secretions on sensitivity of porcine sperm acrosomes to cold shock, initiation of motility and loss of cytoplasmic droplets. J Anim Sci 60: 1295-1302.Google Scholar

  • 113. Saravia, F. (2008). Cryopreservation of boar semen: impact of the use of specifi c ejaculate portions, concentrated packaging, and simplifi ed freezing procedures on sperm cryosurvival and potential fertilizing capacity. Doctoral Thesis No. 2008:98, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine and Animal Science, Division of Reproduction, Department of Clinical Sciences, Uppsala, Sweden.Google Scholar

  • 114. Guthrie, H.D., Welch, G.R. (2005). Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm. Theriogenology 63: 396-410.CrossrefGoogle Scholar

  • 115. Garcia, J.C., Dominquez, J.C., Pena, F.J., Alegre, B., Gonzalez, R., Castro, M.J., Habing, G.G., Kirkwood, R.N. (2010). Thawing boar semen in the presence of seminal plasma: effects on sperm quality and fertility. Anim Reprod Sci 119: 160-165.CrossrefGoogle Scholar

  • 116. Leahy, T., Gadella, B.M. (2011). Capacitation and capacitation-like sperm surface changes induced by handling boar semen. Reprod Domest Anim 46 (Suppl. 2): 7-13.CrossrefGoogle Scholar

  • 117. Gómez-Fernández, J., Gómez-Izquierdo, E., Tomás, C., González-Bulnes, A., Sánchez- Sánchez, R., de Mercado, E. (2012). Inclusion of seminal plasma in sperm cryopreservation of Iberian pig. Anim Reprod Sci 130: 82-90.CrossrefGoogle Scholar

  • 118. Okazaki, T., Akiyoshi, T., Kan, M., Mori, M., Teshima, H., Shimada, M. (2012). Artificial insemination with seminal plasma improves the reproductive performance of frozen-thawed boar epididymal spermatozoa. J Androl 33: 990-998.CrossrefGoogle Scholar

  • 119. Okazaki, T., Shimada, M. (2012). New strategies of boar sperm cryopreservation: development of novel freezing and thawing methods with a focus on the roles of seminal plasma. Anim Sci J 83: 623-629.CrossrefGoogle Scholar

  • 120. Fernández-Gago, R., Domínguez, J.C., Martínez- Pastor, F. (2013). Seminal plasma applied postthawing affects boar sperm physiology: a flow cytometry study. Theriogenology 80: 400-410. CrossrefGoogle Scholar

  • 121. Khalifa, T.A.A., Tsakmakidis, I.A., Michos, I.A., Rekkas, C.A. (2011). Effect of semen processing procedures on quality of cooled boar spermatozoa. Reprod Domest Anim 46 (Suppl. 2): 95-96 (abstract P15).Google Scholar

  • 122. Batellier, F., Magistrini, M., Fauquant, J., Palmer, E. (1997). Effect of milk fractions on survival of equine spermatozoa. Theriogenology 48 : 391-410.CrossrefGoogle Scholar

  • 123. Vishwanath, R., Shannon, P. (2000). Storage of bovine semen in liquid and frozen state. Anim Reprod Sci 62: 23-53.CrossrefGoogle Scholar

  • 124. Salamon, S., Maxwell, W.M.C. (2000). Storage of ram semen. Anim Reprod Sci 62: 77-111.CrossrefGoogle Scholar

  • 125. Leboeuf, B., Restall, B., Salamon, S. (2000). Production and storage of goat semen for artificial insemination. Anim Reprod Sci 62: 113-141.CrossrefGoogle Scholar

  • 126. Gutiérrez-Cepeda, L., Fernández, Á., Crespo, F., Ramírez, M. Á., Gosálvez, J., Serres, C. (2012). The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA. Acta Vet Scand 54: 72, doi: 10.1186/1751-0147-54-72.CrossrefGoogle Scholar

  • 127. Butler, W.J., Roberts, T.K. (1975). Effects of some phosphatidyl compounds on boar spermatozoa following cold shock or slow cooling. J Reprod Fert 43: 183-187.CrossrefGoogle Scholar

  • 128. Pursel, V.G., Johnson, L.A. (1975). Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40: 99-102.Google Scholar

  • 129. Pursel, V.G., Schulman, L.L., Johnson, L.A. (1978). Effect Orvus ES Paste on acrosome morphology. motility and fertilizing capacity of frozen-thawed boar sperm. J Anim Sci 47: 198-202.Google Scholar

  • 130. Graham, E.F., Crabo, B.G., Pace, M.M. (1978). Current status of semen preservation in the ram, boar and stallion. J Anim Sci 47 (Suppl. 2): 80-119.Google Scholar

  • 131. Pursel, V.G., Schulman, L.L., Johnson, L.A. (1978). Effect of glycerol concentration on frozen boar sperm. Theriogenology 9: 305-312.CrossrefGoogle Scholar

  • 132. Pursel, V.G. (1979). Effect of cold shock on boar sperm treated with butylated hydroxytoluene. Biol Reprod 21: 319-324.CrossrefGoogle Scholar

  • 133. Bamba, K., Cran, D.G. (1992). Effects of treatment with butylated hydroxytoluene on the susceptibility of boar spermatozoa to cold stress and dilution. J Reprod Fert 95: 69-77.CrossrefGoogle Scholar

  • 134. Bamba, K., Miyagawa, N. (1992). Protective action of aromatic compounds against cold-shock injuries in boar spermatozoa. Cryobiology 29: 533-536.CrossrefGoogle Scholar

  • 135. Roca, J., Gil, M.A., Hernandez, M., Parrilia, I., Vazquez, J.M., Martinez, E.A. (2004). Survival and fertility of boar spermatozoa after freezethawing in extender supplemented with butylated hydroxytoluene. J Androl 25: 397-405.Google Scholar

  • 136. Khalifa, T.A.A., El-Saidy, B.E. (2006). Pelletfreezing of Damascus goat semen in a chemically defined extender. Anim Reprod Sci 93: 303-315.CrossrefGoogle Scholar

  • 137. Khalifa, T.A.A., Lymberopoulos, A.G., El-Saidy, B.E. (2008). Testing usability of butylated hydroxytoluene in conservation of goat semen. Reprod Domest Anim 43 : 525-530.CrossrefGoogle Scholar

  • 138. Hammerstedt, R.H., Keith, A.D., Snipes, W., Amann, R.P., Arruda, D., Griel, L.C. (1978). Use of spin labels to evaluate effects of cold shock and osmolality on sperm. Biol Reprod 18: 686-696.CrossrefGoogle Scholar

  • 139. Parks, J.E., Graham, J.K. (1992). Effects of cryopreservation procedures on sperm membranes. Theriogenology 38: 209-222.CrossrefGoogle Scholar

  • 140. Demianowicz, W., Strzezek, J. (1995). The effect of lipoprotein fraction from egg yolk on some of the biological properties of boar spermatozoa during storage of the semen in liquid state. Reprod Domest Anim 31: 279-280.CrossrefGoogle Scholar

  • 141. Jiang, Z-I., Li, Q-w., Hu, J-h., W-y., Zhao, H-w., Zhang, S-s. (2007). Improvement of the quality of boar cryopreservation semen by supplementing with low density lipoprotein in diluents. Cryobiology 54: 301-304.CrossrefGoogle Scholar

  • 142. Hu, J-h., Li, Q-w., Jiang, Z-I., Li, W-y. (2008). Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing. Cryobiology 57: 257-262.CrossrefGoogle Scholar

  • 143. Yamauchi, S., Nakamura, S., Lay, K.M., Azuma, T., Yakabi, T., Muto, N., Nakada, T., Ashizawa, K., Tatemoto, H. (2009). Characteristics of Okinawan native Agu pig spermatozoa after addition of lowdensity lipoprotein to freezing extender. J Reprod Dev 55: 558-565.CrossrefGoogle Scholar

  • 144. Wang, P., Wang, Y.F., Wang, C.W., Bu, S.H., Li, Q.W., Pang, W.J., Yang, G.S. (2012). Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing-thawing. Zygote 30: 1-7.Google Scholar

  • 145. Zhang, S-S., Hu, J-H., Li, Q-W., Jiang, Z-L., Zhang, X-Y. (2009). The cryoprotective effects of soybean lecithin on boar spermatozoa quality. African J Biotech 8: 6476-6480.Google Scholar

  • 146. Namula, Z., Sato, Y., Kodama, R., Morinaga, K., Luu, V.V., Taniguchi, M., Nakai, M., Tanihara, F., Kikuchi, K., Nagai, T., Otoi, T. (2013). Motility and fertility of boar semen after liquid preservation at 5oC for more than 2 weeks. Anim Sci J 84: 600-606. Google Scholar

  • 147. Almlid, T., Johnson, L.A. (1988). Effect of glycerol concentration, equilibration time and temperature of glycerol addition on post-thaw viability of boar spermatozoa frozen in straws. J Anim Sci 66: 2899-2905.Google Scholar

  • 148. Fiser, P.S., Fairfull, R.W., Panich, P.L. (1996). Glycerol equilibration time revisited. Reprod Domest Anim 31 (1): 141-146.Google Scholar

  • 149. Fiser, P.S., Fairfull, R.W. (1990). Combined effect of glycerol concentration and cooling velocity on motility and acrosomal integrity of boar spermatozoa frozen in 0.5 ml straws. Mol Reprod Dev 25: 123-129.Google Scholar

  • 150. Morris, G.J., Acton, E., Murray, B.J., Fonseca, F. (2012). Freezing injury: the special case of the sperm cell. Cryobiology 64: 71-80.CrossrefGoogle Scholar

  • 151. Mazur, P. (1985). Basic concepts in freezing cells. Proceeding of the 1st International Conference on Deep Freezing of Boar Semen. Swedish University of Agriculture Sciences, Uppsala, Sweden, pp. 91-111.Google Scholar

  • 152. Mazur, P., Leibo, S.P., Seidel Jr., E. (2008). Cryopreservation of the germplasm of animals used in biological and medical research: importance, status, and future implications. Biol Reprod 78: 2-12.CrossrefGoogle Scholar

  • 153. Wessel, M.T., Ball, B.A. (2004). Step-wise dilution for removal of glycerol from fresh and cryopreserved equine spermatozoa. Anim Reprod Sci 84: 147-156.CrossrefGoogle Scholar

  • 154. Burnaugh, L., Ball, B.A., Sabeur, K., Thomas, A.D., Meyers, S.A. (2010). Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses. Anim Reprod Sci 117: 249-260.CrossrefGoogle Scholar

  • 155. Baumber, J., Vo, A., Sabeur, K., Ball, B.A. (2002). Generation of reactive oxygen species by equine neutrophils and their effect on motility of equine spermatozoa. Theriogenology 57: 1025-1033.CrossrefGoogle Scholar

  • 156. Broekhuijse, M.L.W.J., Feitsma, H., Gadella, B.M. (2012). Field data analysis of boar semen quality. Reprod Domest Anim 46 (Suppl. 2): 59-63.Google Scholar

  • 157. Young, L.G., King, G.L. (1986). Low concentrations of zearalenone in diets of boars for a prolonged period of time. J Anim Sci 63: 1197-1200.Google Scholar

  • 158. Solti, L., Pécsi, T., Barna-Vetró, I., Szász, F.Jr., Biró, K., Szabó, E. (1999). Analysis of serum and seminal plasma after feeding ochratoxin A with breeding boars. Anim Reprod Sci 56: 123-132.CrossrefGoogle Scholar

  • 159. Biró, K., Barna-Vetró, I., Pécsi, T., Szabó, E., Winkler, G., Fink-Gremmels, J., Solti, L. (2003). Evaluation of spermatological parameters in ochratoxin A-challenged boars. Theriogenology 60: 199-207.CrossrefGoogle Scholar

  • 160. Tsakmakidis, I.A., Lymberopoulos, A.G., Alexopoulos, C., Boscos, C.M., Kyriakis, S.C. (2006). In vitro effect of zearalenone and alphazearalenone on boar sperm characteristics and acrosome reaction. Reprod Domest Anim 41: 394-401.CrossrefGoogle Scholar

  • 161. Tsakmakidis, I.A., Lymberopoulos, A.G., Vainas, E., Boscos, C.M., Kyriakis, S.C., Alexopoulos, C. (2007). Study on the in vitro effect of zearalenone and alpha-zearalenone on boar spermzona pellucida interaction by hemizona assay application. J Appl Toxicol 27: 498-505.CrossrefGoogle Scholar

  • 162. Tsakmakidis, I.A., Lymberopoulos, A.G., Khalifa, T.A.A., Boscos, C.M., Saratsi, A., Alexopoulos, C. (2008). Evaluation of zearalenone and alpha-zearalenone toxicity on boar sperm DNA integrity. J Appl Toxicol 28: 681-688.CrossrefGoogle Scholar

  • 163. Thibier, M., Guerin, B. (2000). Hygienic aspects of storage and use of semen for artificial insemination. Anim Reprod Sci 62: 233-251.CrossrefGoogle Scholar

  • 164. Bielanski, A. (2007). Disinfection procedures for controlling microorganisms in the semen and embryos of humans and farm animals. Theriogenology 68: 1-22.CrossrefGoogle Scholar

  • 165. Althouse, G.C., Rossow, K. (2011). The potential risk of infectious disease dissemination via artificial insemination in swine. Reprod Domest Anim 46 (Suppl. 2): 64-67.CrossrefGoogle Scholar

  • 166. Bussalleu, E., Pinart, E., Rivera, M.M., Arias, X., Briz, M., Sancho, S., García-Gil, N., Bassols, J., Pruneda, A., Yeste, M., Casas, I., Rigau, T., Rodriguez-Gil, J.E., Bonet, S. (2008). Effects of filtration of semen doses from subfertile boars through neuter sephadex columns. Reprod Domest Anim 43: 48-52.Google Scholar

  • 167. Morrell, J.M., Saravia, F., Van Wienen, M., Wallgren, M., Rodriguez-Martinez, H. (2009). Selection of boar spermatozoa using centrifugation on a glycidoxypropyltrimethoxysilane-coated silica colloid. J Reprod Dev 55: 547-552.CrossrefGoogle Scholar

  • 168. Morrell, J.M., Saravia, F., Van Wienen, M., Wallgren, M., Rodriguez-Martinez, H. (2009). Sperm survival following colloid centrifugation varies according to the part of the sperm-rich fraction used. Soc Reprod Fertil Suppl 66: 85-86.Google Scholar

  • 169. Ramió-LIuch, L., Balasch, S., Bonet, S., Briz, M., Pinart, E., Rodríguez-Gil, J. E. (2009). Effects of filtration through sephadex columns improve overall quality parameters and “in vivo” fertility of subfertile refrigerated boar-semen. Anim Reprod Sci 115: 189-200.CrossrefGoogle Scholar

  • 170. Blomqvist, G., Persson, M., Wallgren, M., Wallgren, P., Morrell, J.M. (2011). Removal of virus from boar semen spiked with porcine circovirus type 2. Anim Reprod Sci 126: 108-114.CrossrefGoogle Scholar

  • 171. Holt, W.V., Van Look, K.J.W. (2004). Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction 127: 527-535.CrossrefGoogle Scholar

  • 172. Pertoft, H., Laurent, T.C., Låås, T., Kågedal, L. (1978). Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem 88: 271-282. CrossrefGoogle Scholar

  • 173. Rodriguez-Martinez, H., Larsson, B., Pertoft, H. (1997). Evaluation of sperm damage and techniques for sperm clean-up. Reprod Fertil Dev 9: 297-308.CrossrefGoogle Scholar

  • 174. Mortimer, D. (2000). Sperm preparation methods. J Androl 21: 357-366.Google Scholar

  • 175. Henkel, R.R., Schill, W-B. (2003). Sperm preparation for ART. Reprod Biol Endocrinol 1: 108 (http://www.rbej.com/content/1/1/108).CrossrefGoogle Scholar

  • 176. Morrell, J.M., Rodriguez-Martinez, H. (2009). Biomimetic techniques for improving sperm quality in animal breeding: a review. The Open Andrololgy Journal 1: 1-9 (Bentham open access).Google Scholar

  • 177. Morrell, J.M., Rodriguez-Martinez, H. (2010). Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Veterinary Medicine International, volume 2011, article ID 894767, SAGE-Hindawi access to research (doi: 10.4061/2011/894767).Google Scholar

  • 178. Vanderwall, D.K. (2008). How to process a dilute ejaculate of semen for cooled-transported insemination. Proceedings of the 54th Annual Convention of the American Association of Equine Practitioners, Dec 6-10, San Diego, California, Vol. 54, pp. 369-373.Google Scholar

  • 179. Matthijs, A., Harkema, W., Engel, B., Woelders, H. (2000). In vitro phagocytosis of boar spermatozoa by neutrophils from peripheral blood of sows. J Reprod Fertil 120: 265-273.Google Scholar

  • 180. Matthijs, A., Engel, B., Woelders, H. (2003). Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. Reproduction 125: 357-367.CrossrefGoogle Scholar

  • 181. Oh, S.A., Park, Y.J., You, Y.A., Mohamed, E. A., Pang, M.G. (2010). Capacitation status of stored boar spermatozoa is related to litter size of sows. Anim Reprod Sci 121:131-138.CrossrefGoogle Scholar

  • 182. Horrigan, L.A.,Kelly, J.P., Connor, T.J. (2004). Caffeine suppresses TNF-α production via activation of the cyclic AMP/protein kinase A pathway. Int J Immunopharmacol 4: 1409-1417.CrossrefGoogle Scholar

  • 183. Horrigan, L.A.,Kelly, J.P., Connor, T.J. (2009). Immunomodulatory effects of caffeine: Friend or foe? Pharmacol Ther 111: 877-892.Google Scholar

  • 184. Yeste, M., Briz, M., Pinart, E., Sancho, S., Garcia- Gil, N., Badia, E., Bassols, J., Pruneda, A., Bussalleu, E., Casas, I., Bonet, S. (2008). Hyaluronic acid delays boar sperm capacitation after 3 days of storage at 15oC. Anim Reprod Sci 109: 236-250.Google Scholar

  • 185. Martecikova, S., Hulinska, P., Reckova, Z., Pavlik, A., Jeseta, M., Machatkova, M. (2010). Effect of acrosome reaction progress in frozen-thawed boar spermatozoa on the efficiency of in vitro oocyte fertilization. Veterinarni Medicina, 55: 429-437.Google Scholar

  • 186. Yamaguchi, S., Suzuki, C., Noguchi, M., Kasa, S., Mori, M., Isozaki, Y., Ueda, S., Funahashi, H., Kikuchi, K., Nagai, T., Yoshioka, K. (2013). Effects of caffeine on sperm characteristics after thawing and inflammatory response in the uterus after artificial insemination with frozen-thawed boar semen. Theriogenology 79: 87-93.CrossrefGoogle Scholar

  • 187. Li, J.-C., Yamaguchib, S., Kondoa, Y., Funahashia, H. (2011). Caffeine, dibutyryl cyclic-AMP and heparin affect the chemotactic and phagocytotic activities of neutrophils for boar sperm in vitro. Theriogenology 75:1336-1345.CrossrefGoogle Scholar

  • 188. Li, J.-C., Yamaguchib, S., Kondoa, Y., Funahashia, H. (2012). Boar seminal plasma or hen’s egg yolk decrease the in vitro chemotactic and phagocytotic activities of neutrophils when co-incubated with boar or bull sperm. Theriogenology 77: 73-80.CrossrefGoogle Scholar

  • 189. Jiwakanon, J., Persson, E., Berg, M., Dalin, A.M. (2011). Influence of seminal plasma, spermatozoa and semen extender on cytokine expression in the porcine endometrium after insemination. Anim Reprod Sci 123:210-220.CrossrefGoogle Scholar

  • 190. Katila, T. (2012). Post-mating inflammatory responses of the uterus. Reprod Domest Anim 47 (Suppl. 5): 31-41.CrossrefGoogle Scholar

  • 191. Langendijk, P., Soede, N.M., Kemp, B. (2005). Uterine activity, sperm transport, and the role of boar stimuli around insemination in sows. Theriogenology 63: 500-513.CrossrefGoogle Scholar

  • 192. Yamaguchi, S., Funahashi, H., Murakami, T. (2009). Improved fertility in gilts and sows after artificial insemination of frozen-thawed boar semen by supplementation of semen extender with caffeine and CaCl2. J Reprod Dev 55: 645-649.Google Scholar

  • 193. Yamaguchi, S., Funahashi, H. (2012). Effect of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination. Theriogenology 77: 926-932.CrossrefGoogle Scholar

  • 194. Vazquez, J.M., Roca, J., Gil, M.A., Cuello, C., Parrilla, I., Vazquez, J.L., Martínez, E.A. (2008). New developments in low-dose insemination technology. Theriogenology 70: 1216-1224.CrossrefGoogle Scholar

  • 195. Watson, P.F., Behan, J.R. (2006). A field investigation of intra-cervical insemination with reduced sperm numbers in gilts. Theriogenology 66:338-343.Google Scholar

  • 196. Martinez, E.A.,Vazquez, J.M., Roca, J., Lucas, X., Gil, M.A., Parrilla, I., Vazquez, J.L., Day, B.N. (2001). Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. Reproduction 122: 289-296.CrossrefGoogle Scholar

  • 197. Martinez, E.A.,Vazquez, J.M., Roca, J., Lucas, X., Gil, M.A., Parrilla, I., Vazquez, J.L., Day, B.N. (2002). Minimum number of spermatozoa required for normal fertility after deep intrauterine insemination in non-sedated sows. Reproduction 123: 163-170. CrossrefGoogle Scholar

  • 198. Vazquez, J.M., Roca, J., Gil, M.A., Cuello, C., Parrilla, I., Vazquez, J.L., Martínez, E.A. (2008). Low-dose insemination in pigs: problems and possibilities. Reprod Domes Anim 43 (Suppl. 2): 347-354.CrossrefGoogle Scholar

  • 199. Spencer, K.W. (2010). Factors affecting fertility of frozen-thawed boar sperm. M.S. Thesis, University of Illinois at Urbana-Champaign, Illinois, USA (http://hdl.handle.net/2142/16492).Google Scholar

  • 200. Vazquez, J.M., Martínez, E.A., Roca, J., Gil, M.A., Parrilla, I., Cuello, C., Carvajal, G., Lucas, X., Vazquez, J.L. (2005). Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology 63: 536-547.CrossrefGoogle Scholar

  • 201. Spencer, K.W., Purdy, P.H., Blackburn, H.D., Spiller, S.F., Stewart, T.S., Knox, R.V. (2010). Effect of number of motile, frozen-thawed boar sperm and number of fixed-time inseminations on fertility in estrous-synchronized gilts. Anim Reprod Sci 121: 259-266.CrossrefGoogle Scholar

About the article

Received: 2013-09-07

Accepted: 2013-09-30

Published Online: 2015-11-18

Published in Print: 2014-03-01


Citation Information: Macedonian Veterinary Review, ISSN (Online) 1857-7415, DOI: https://doi.org/10.14432/j.macvetrev.2013.09.001.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in