Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2016: 0.161
Source Normalized Impact per Paper (SNIP) 2016: 0.368

Open Access
Online
ISSN
1857-7415
See all formats and pricing
More options …

Comparative Clinical and Haematological Investigations in Lactating Cows with Subclinical and Clinical Ketosis

Vania Marutsova
  • Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, Students’ Campus, 6000 Stara Zagora, Bulgaria
/ Rumen Binev
  • Corresponding author
  • Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, Students’ Campus, 6000 Stara Zagora, Bulgaria
  • Email:
/ Plamen Marutsov
  • Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Students’ Campus, 6000 Stara Zagora, Bulgaria
Published Online: 2015-11-18 | DOI: https://doi.org/10.14432/j.macvetrev.2015.04.042

Abstract

Ketosis of lactating cows is among the most common metabolic diseases in modern dairy farms. The economic importance of the disease is caused by the reduced milk yield and body weight loss, poor feed conversion, lower conception rates, culling and increased mortality of affected animals. In the present study, a total of 47 high-yielding dairy cows up to 45 days in milk (DIM) are included. All animals were submitted to physical examination wich included checking the rectal body temperature, heart rate, respiratory and rumen contraction rates, and inspection of visible mucous coats. The body condition was scored, and blood β-hydroxybutyrate (BHBA) concentrations were assayed. The cows were divided into 3 groups: first group (control) (n=24) with blood β-hydroxybutyrate level <1.2 mmol/l, second group (n=15) with blood β-hydroxybutyrate between 1.2-2.6 mmol/l (subclinical ketosis) and third group (n=8) with blood β-hydroxybutyrate >2.6 mmol/l (clinical ketosis). Whole blood samples were obtained and analyzed for Red Blood Cell (RBC, 1012/l), Hemoglobin (HGB, g/l), Hematocrit (HCT, %), Mean Corpuscular Volume (MCV, fl), Mean Corpuscular Hemoglobin (MCH, pg), Mean Corpuscular Hemoglobin Concentration (MCHC, g/l), White Blood Cell (WBC, 109/l), Lymphocytes (LYM, 109/l), Monocytes (MON, 109/l), Granulocytes (GRA, 109/l), Red Blood Distribution Width (RDW, %), Red Blood Cell Distribution Width Absolute (RDWa, fl), Platelets (PLT, 109/l) and Mean Platelet Volume (MPV, fl). In this study, deviations in the clinical parameters in the control group and in those with subclinical ketosis were not identified. The cows from the third group (clinical ketosis) exhibited hypotonia, anorexia and body weight loss vs. control group. Hematological analysis showed leukocytosis and lymphocytosis in cows with subclinical ketosis vs. control group. In cows with clinical ketosis WBC counts decreased (leukopenia), while hemoglobin content and hematocrit values are higher vs. control group. Blood BHBA values are higher in both groups of ketotic cows vs. the control group. The other analyzed parameters (RBC, MCH, MCHC, MCV, RDW, RDWa, MON, GRA, PLT and MPV) were close to control values.

Keywords: ketosis; hematological parameters; β-hydroxybutyrate; dairy cows

References

  • 1. Bell, A.W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73, 2804-2819. PMid:8582872Google Scholar

  • 2. Oetzel, G.R. (2004). Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am. Food Anim. Pract. 20, 651-674. http://dx.doi.org/10.1016/j.cvfa.2004.06.006 PMid:15471629CrossrefGoogle Scholar

  • 3. Kirovski, D., Šamanc, H., Cernescu, H., Jovanović, M., Vujanac, I. (2008). Fatty liver incidence on dairy cow farms in Serbia and Romania. International Symposium New Researches in Biotechnology”, Romania, Buchurest, November 20th to 21st, Biotechnology, series F, special volume. Google Scholar

  • 4. Radostis, O.M., Gay, C.C., Blood, D.C., Hinchcliff, K.W. (2000). Ketosis of ruminants. In: Radostits OM, DC Blood and CC Gay (Eds). Veterinary medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses. (pp. 1452-1462). 9th Edition. London: Sounders Company.Google Scholar

  • 5. Nogalski, Z., Górak, E. (2008). Effects of the body condition of heifers at calving and at the first stage of lactation on milk performance. Med. Weter. 64, 322-326.Google Scholar

  • 6. Duffield, T.F., Kelton, D.F., Leslie, K.E., Lissemore, K.D., Lumsden, J.H. (1997). Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 38, 713-718. PMid:9360791 PMCid:PMC1576823Google Scholar

  • 7. McArt, J.A., Nydam, D.V., Oetzel, G.R. (2013). Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. J. Dairy Sci. 96, 198-209. http://dx.doi.org/10.3168/jds.2012-5681 PMid:23102961CrossrefWeb of ScienceGoogle Scholar

  • 8. Whitaker, D.A., Smith, E.J., da Rosa, G.O., Kelly, J.M. (1993). Some effects of nutrition and management on the fertility of dairy cattle. Vet. Rec. 133, 61-64. http://dx.doi.org/10.1136/vr.133.3.61 PMid:8212484CrossrefGoogle Scholar

  • 9. Walsh, R., LeBlanc, S., Duffield, T., Leslie, K. (2004). Retrospective analysis of the association between subclinical ketosis and conception failure in Ontario dairy herds. Proc. World Buiatrics Congress / Med. Vet. Quebec, 34-152.Google Scholar

  • 10. Suriyasathaporn, W., Heuer, C., Noordhuizen-Stassen, E.N., Schukken, Y.H. (2000). Hyperketonemia and udder defense: a review. Vet. Res. 31, 397-412. http://dx.doi.org/10.1051/vetres:2000128 PMid:10958241CrossrefGoogle Scholar

  • 11. LeBlanc, S.J., Leslie, K.E., Duffield, T.F. (2005). Metabolic predictors of displaced abomasum in dairy cattle. J. Dairy Sci. 88, 159-170. http://dx.doi.org/10.3168/jds.S0022-0302(05)72674-6CrossrefGoogle Scholar

  • 12. Duffield, T.F., Lissemore, K.D., McBride, B.W., Leslie, K.E. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 92, 571-580. http://dx.doi.org/10.3168/jds.2008-1507 PMid:19164667CrossrefGoogle Scholar

  • 13. Meglia, G.E., Johannisson, A., Petersson, L., Persson Waller, K. (2001). Changes in some blood micronutritiens, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet. Scand. 42, 139-150. http://dx.doi.org/10.1186/1751-0147-42-139 PMid:11455894 PMCid:PMC2202342CrossrefGoogle Scholar

  • 14. Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R. (2010). Associations of elevated non-esterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci. 93, 1596-1603. http://dx.doi.org/10.3168/jds.2009-2852 PMid:20338437Web of ScienceCrossrefGoogle Scholar

  • 15. Hungerford, T.G. (1990). Diseases of cattle. In: Diseases of livestock, 9th Edition (pp. 34-347).Google Scholar

  • 16. Oetzel, G.R. (2007). Herd-level ketosis - diagnosis and risk factors. Preconference seminar 7C: Dairy herd problem investigation strategies: transition cow troubleshooting American association of bovine practitioners, 40th Annual Conference, September 19, 2007 - Vancouver, BC, CanadaGoogle Scholar

  • 17. Waltner, S.S., McNamara, J.P., Hillers, J.K. (1993). Relationships of body condition score to production variables in high producing Holstein cows. J. Dairy Sci. 76, 3410-3419. http://dx.doi.org/10.3168/jds.S0022-0302(93)77679-1CrossrefGoogle Scholar

  • 18. Bewley, J.M., Schutz, M.M. (2008). Review: An interdisciplinary review of body condition scoring for dairy cattle. Professional Animal Scientist 24, 507-529.Google Scholar

  • 19. Garnsworthy, P. (2008). Influences of body condition on fertility and milk yield. In: Proc dairy cattle reproduction council convention, 63-72.Google Scholar

  • 20. Skidmore, A.L., Peeters, K.A.M., Sniffen, C.J., Brand, A. (2001). Monitoring dry period management. In: Brand, A., Noordhuizen, J. P. T. M., Schukken, Y. H. (Eds.), Herd Health and Production Management in Dairy Practice. (pp. 171-201). Wageningen PressGoogle Scholar

  • 21. Gillund, P., Reksen, O., Grohn, Y.T., Karlberg, K. (2001). Body condition related to ketosis and reproductive performance in Norwegian dairy cows. J. Dairy Sci. 84, 1390-1396. http://dx.doi.org/10.3168/jds.S0022-0302(01)70170-1CrossrefGoogle Scholar

  • 22. Găvan, C., Retea, C., Motorga, V. (2010). Changes in the hematological profile of Holstein primiparous in periparturient period and in early to mid-lactation. Animal Sciences and Biotechnologies 43, 244-246.Google Scholar

  • 23. Duffield, T.F. (2004). Monitoring strategies for metabolic disease in transition dairy cows. IVIS, 23rd WBC Congress, Québec, Canada.Google Scholar

  • 24. Goldhawk, C., Chapinal, N., Veira, D.M., Weary, D.M., Keyserlingk, von M.A.G. (2009). Prepartum feeding behavior is an early indicator of subclinical ketosis. J. Dairy Sci. 92, 4971-4977. http://dx.doi.org/10.3168/jds.2009-2242 PMid:19762814 Web of ScienceCrossrefGoogle Scholar

  • 25. Kinoshita, A., Wolf, C., Zeyner, A. (2010). Studies on the incidence of hyperketonemia with and without hyperbilirubinaemia in cows in Mecklenburg- Vorpommern (in Germany) in the course of the year. Tieraerztliche Praxis 38, 7-15.Google Scholar

  • 26. Seifi, H.A., LeBlanc, S.J., Leslie, K.E., Duffield, T.F. (2011). Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J. 188, 216-220. http://dx.doi.org/10.1016/j.tvjl.2010.04.007 PMid:20457532CrossrefGoogle Scholar

  • 27. Geishauser, T., Leslie, K., Tenhag, J., Bashiri, A. (2000). Evaluation of eight cowside ketone tests in milk for detection of subclinical ketosis in dairy cows. J. Dairy Sci. 83, 296-299.CrossrefGoogle Scholar

  • 28. Binev, R., Marutsova, V., Radev, V. (2014). Clinical and haematological studies on subclinical lactational ketosis in dairy goats. Agricultural Science and Technology 6, 427−430.Google Scholar

  • 29. Andrews, A.H., Blowey, R.W., Boyd, H., Eddy, R.G. (2004). Bovine Medicine Diseases and Husbandry of Cattle. Second edition. USA: Blackwell Publishing Company.Google Scholar

  • 30. González, F.D., Mui-o, R., Pereira, V., Campos, R., Benedito, J.L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Dairy Sci. 12, 251-255. http://dx.doi.org/10.4142/jvs.2011.12.3.251CrossrefGoogle Scholar

  • 31. Suthar, V.S., Canelas-Raposo, J., Deniz, A., Heuwieser, W. (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 96, 2925-2938. http://dx.doi.org/10.3168/jds.2012-6035 PMid:23497997CrossrefWeb of ScienceGoogle Scholar

  • 32. Edmonson, A.J., Lean, I.J., Weaver, L.D., Farver, T., Webster, G. (1989). A body condition chart for Holstein dairy cows. J. Dairy Sci. 72, 68-78. http://dx.doi.org/10.3168/jds.S0022-0302(89)79081-0CrossrefGoogle Scholar

  • 33. LeBlanc, S. (2010). Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 56, 29-35. http://dx.doi.org/10.1262/jrd.1056S29Web of ScienceCrossrefGoogle Scholar

  • 34. Grummer, R.R. (1993). Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76, 3882-3896. http://dx.doi.org/10.3168/jds.S0022-0302(93)77729-2CrossrefGoogle Scholar

  • 35. López-Gatius, F., Santolaria, P., Yaniz, J., Rutllant, J., López-Béjar, M. (2002). Factors affecting pregnancy loss from gestation day 38 to 90 in lactating dairy cows from a single herd. Theriogenology 57, 1251-1261. http://dx.doi.org/10.1016/S0093-691X(01)00715-4CrossrefGoogle Scholar

  • 36. Ruegg, P.L., Milton, R.L. (1995). Body condition scores of Holstein cows on Prince Edward Island, Canada: relationship with yield, reproductive performance, and disease. J. Dairy Sci. 78, 552-564. http://dx.doi.org/10.3168/jds.S0022-0302(95)76666-8CrossrefGoogle Scholar

  • 37. Markusfeld, O., Galon, N., Ezra, E. (1997). Body condition score, health, yield and fertility in dairy cows. Vet. Rec. 141, 67-72. http://dx.doi.org/10.1136/vr.141.3.67 PMid:9257435CrossrefGoogle Scholar

  • 38. Sahinduran, S., Sezer K., Buyukoglu T., Albay M.K., Karakurum M.C. (2010). Evaluation of some haematological and biochemical parameters before and after treatment in cows with ketosis and comparison of different treatment methods. J. Anim. Vet. Adv. 9, 266-271. http://dx.doi.org/10.3923/javaa.2010.266.271CrossrefGoogle Scholar

  • 39. Belić, B., Cincović, M.R., Stojanović, D., Kovačević, Z., Vidović, B. (2010). Morphology of erythrocyte and ketosis in dairy cows with different body condition. Contemporary agriculture 59, 306-311.Google Scholar

  • 40. Sandev, N., Ilieva, D., Sizov, I., Rusenova, N., Iliev, E. (2006). Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004. Vet. Arhiv 76, 263-268.Google Scholar

  • 41. Hoeben, D., Heyneman, R., Burvenich, C. (1997). Elevated levels of beta-hydroxybutyric acid in periparturient cows and in vitro effect on respiratory burst activity of bovine neutrophils. Vet. Immunol. Immunopathol. 58, 165-170. http://dx.doi.org/10.1016/S0165-2427(97)00031-7CrossrefGoogle Scholar

  • 42. Hoeben, D., Burvenich, C., Massart-Leen, A.M., Lenjou, M., Nijs, G., Van Bockstaele, D. (1999). In vitro effect of ketone bodies, glucocorticosteroids and bovine pregnancy-associated glycoprotein on cultures of bone marrow progenitor cells of cows and calves. Vet. Immunol. Immunopathol. 68, 229-240. http://dx.doi.org/10.1016/S0165-2427(99)00031-8CrossrefGoogle Scholar

  • 43. Suriyasathaporn, W., Daemen, A.J., Noordhuizen- Stassen, E.N., Dieleman, S.J., Nielen, M., Schukken, Y.H. (1999). Beta-hydroxybutyrate levels in peripheral blood and ketone bodies supplemented in culture media affect the in vitro chemotaxis of bovine leukocytes. Vet.Immunol. Immunopathol. 68, 177-186. http://dx.doi.org/10.1016/S0165-2427(99)00017-3CrossrefGoogle Scholar

  • 44. Cincović, R.M., Belić, B., Radojičić, B., Hristov, S., Đoković, R. (2012). Infl uence of lipolysis and ketogenesis to metabolic and hematological parameters in dairy cows during periparturient period. Acta Vet. 62, 429-444. http://dx.doi.org/10.2298/AVB1204429C Web of ScienceCrossrefGoogle Scholar

  • 45. Belić, B., Cincović, M. R., Krčmar, Lj., Vidović, B. (2011). Reference values and frequency distribution of hematological parameters in cows during lactation and in pregnancy. Contemporary agriculture 60, 145-151.Google Scholar

  • 46. Burton, J.L., Madsen, S.A., Chang, L.C., Weber, P.S., Buckham, K.R, Van Dorp, R., Hickey, M.C., Earley, B. (2005). Gene expression signatures in neutrophils exposed to glucocorticoids: A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet. Immunol. Immunopathol. 105, 197-219. http://dx.doi.org/10.1016/j.vetimm.2005.02.012 PMid:15808301 CrossrefGoogle Scholar

  • 47. Hefnawy, A.E., Shousha, S., Youssef, S. (2011). Hematobiochemical profile of pregnant and experimentally pregnancy toxemic goats. J. Basic. Appl. Chem. 1, 65-69.Google Scholar

  • 48. Wyle, F.A., Kent, J.R. (1977). Immunosuppression by sex steroid hormones. Clin. Exp. Immunol. 27, 407. PMid:862230 PMCid:PMC1540928Google Scholar

About the article

Received: 2015-01-20

Revised: 2015-03-27

Accepted: 2015-03-31

Published Online: 2015-11-18

Published in Print: 2015-10-01


Citation Information: Macedonian Veterinary Review, ISSN (Online) 1857-7415, DOI: https://doi.org/10.14432/j.macvetrev.2015.04.042.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in