Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2016: 0.161
Source Normalized Impact per Paper (SNIP) 2016: 0.368

Open Access
Online
ISSN
1857-7415
See all formats and pricing
More options …

Phenotypic and Genotypic Characteristics of Enterocin Producing Enterococci against Pathogenic Bacteria

Sandra Mojsova
  • Corresponding author
  • Food Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
  • Email:
/ Kiril Krstevski
  • Veterinary Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Igor Dzadzovski
  • Veterinary Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Zagorka Popova
  • Veterinary Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Pavle Sekulovski
  • Food Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
Published Online: 2015-11-18 | DOI: https://doi.org/10.14432/j.macvetrev.2015.08.052

Abstract

The study investigated the antimicrobial activity of 13 enterococcal strains (E. faecalis -8, E. faecium-2, E. hirae-2, E. spp.-1) isolated from our traditional cheeses against pathogen microorganisms. Also, it includes the detection of the following enterocin structural genes: enterocin A, enterocin B, enterocin P, enterocin L50A/B, bacteriocin 31, enterocin AS48, enterocin Q, enterocin EJ97 and cytolysin by using PCR method. All isolates inhibited growth of L. monocytogenes and L.innocua. One isolate had a broader antimicrobial activity. None of the isolates showed inhibitory activity against S. enteritidis, E. coli and Y. enterocolitica. The genes enterocin P, cytolysin and enterocin A were the most frequently detected structural genes among the PCR positive strains. No amplification was obtained in two strains E. faecalis-25 and E. faecalis-86. Three different genes were identified in some strains. With the exclusion of strains possessing a virulence factor, such as cytolysin, producers of more than one enterocins could be of a great technological potential as protective cultures in the cheese industry.

Keywords: traditional cheese; enterococci; enterocins; antimicrobial activity

References

  • 1. Mead, P.S., Slutsker, L., Dietz, V., Mccaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. (1999). Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607-625. http://dx.doi.org/10.3201/eid0505.990502 PMid:10511517 PMCid:PMC2627714CrossrefGoogle Scholar

  • 2. De Buyser, M.L., Dufour, B., Marie, M., Lafarge, V. (2001). Implication of milk and milk products in foodborne diseases in France and in different industrialized countries. Int. J. Food. Microbiol. 67, 1-17. http://dx.doi.org/10.1016/S0168-1605(01)00443-3CrossrefGoogle Scholar

  • 3. Giraffa, G. (2002). Enterococci from foods FEMS Microbiology Reviews 26 pp. 163-171. http://dx.doi.org/10.1111/j.1574-6976.2002.tb00608.x PMid:12069881CrossrefGoogle Scholar

  • 4. Folquie-Moreno, M. R., Sarantinoupulos, P., Tsakalidou, E., De Vuyst, L. (2006). The role and application of enterococci in food and health. Int. J. Food. Microbiol. 106, 1-24. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.06.026 PMid:16216368CrossrefGoogle Scholar

  • 5. Manolopoulou, E., Sarantinopoulos, P., Zoidou, E., Aktypis, A., Moschopoulou, E., Kandarakis, IG. (2003). Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int J Food Microbiol. 82(2):153-161. http://dx.doi.org/10.1016/S0168-1605(02)00258-1CrossrefGoogle Scholar

  • 6. De Vuyst, L.,. Vandamme E. J. (1994). Antimicrobial potential of lactic acid bacteria, p. 91-142. InL. de Vuyst and E. J. Vandamme (ed.), Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London, United Kingdom.Google Scholar

  • 7. Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L. (2001). Bacteriocins: safe natural antimicrobials for food preservation. Int. J. Food. Microbiol. 71,1-20. http://dx.doi.org/10.1016/S0168-1605(01)00560-8CrossrefGoogle Scholar

  • 8. Deegan, I. H., Cotter, P. D., Hill, C., Ross, P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 16, 1058-1071. http://dx.doi.org/10.1016/j.idairyj.2005.10.026CrossrefGoogle Scholar

  • 9. O’Sullivan, L., Ross, R.P., Hill, C. (2002). Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84, 593-604. http://dx.doi.org/10.1016/S0300-9084(02)01457-8CrossrefGoogle Scholar

  • 10. Klaenhammer, T. R., Barrangou, R., Buck, B. L., Azcarate-Peril, M. A., Altermann, E. (2005). Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev. 29, 393-409. http://dx.doi.org/10.1016/j.fmrre.2005.04.007 PMid:15964092CrossrefGoogle Scholar

  • 11. Casaus, P., Nilsen, T., Cintas, LM., Nes, IF., Hernández, PE., Holo, H. (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143(Pt 7):2287-2294. http://dx.doi.org/10.1099/00221287-143-7-2287 PMid:9245817CrossrefGoogle Scholar

  • 12. Galvez, A., Abriouel, H.; Lopez, R.L.,Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. Int. J. Food. Microbiol. 120, 51-70. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.06.001 PMid:17614151Web of ScienceCrossrefGoogle Scholar

  • 13. Bennik, M. et al. (1998). A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim. Biophys. Acta, 1373, 47-58. http://dx.doi.org/10.1016/S0005-2736(98)00086-8CrossrefGoogle Scholar

  • 14. Dutka-Malen S, Evers S, Courvalin P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol., 33(1): 24-27.Google Scholar

  • 15. Jackson, C.R., Fedorka-Cray, P.J., Barrett, J.B. (2004). Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol. 42, 3558-3565. http://dx.doi.org/10.1128/JCM.42.8.3558-3565.2004 PMid:15297497 PMCid:PMC497640CrossrefGoogle Scholar

  • 16. Yousuf NMK, Dawyndt P, Abriouel H (2005). Molecular Characterization, technological properties and safety aspects of enteroccocci from Husuwa, an African fermented sorghum product. J Appl. Microbiol. 98, 216-228. http://dx.doi.org/10.1111/j.1365-2672.2004.02450.x PMid:15610435CrossrefGoogle Scholar

  • 17. Ben Belgacem Z, Abriouel H, Ben Omar (2010). Antimicrobial activity, safety aspects and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian meat. Food Control 21, 462-470. http://dx.doi.org/10.1016/j.foodcont.2009.07.007CrossrefWeb of ScienceGoogle Scholar

  • 18. Sanchez-Hidalgo, M., Maqueda, M., Galvez, A., Valdivia, E. and Martinez-Bueno, M. (2003). The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol. 62, 1633-1641. http://dx.doi.org/10.1128/AEM.69.3.1633-1641.2003 PMCid:PMC150074CrossrefGoogle Scholar

  • 19. Vankerckhoven, V., Van Autgaerden, T., Vael, C., Lammens, C., Chapelle, S., Rossi, R., Jabes, D., Goossens, H. (2004). Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol. 42, 4473-4479. http://dx.doi.org/10.1128/JCM.42.10.4473-4479.2004 PMid:15472296 PMCid:PMC522368CrossrefGoogle Scholar

  • 20. Franz, C., Van Belkum, MJ., Holzapfel, WH., Abriouel, H., Gálvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping into a new classification scheme. FEMS Microbiol Rev. 31: 293-310. http://dx.doi.org/10.1111/j.1574-6976.2007.00064.x PMid:17298586Web of ScienceCrossrefGoogle Scholar

  • 21. Giraffa, G. (1995). Enterococcal bacteriocins: their potential as anti-Listeria factors in dairy technology. Food Microbiol 12, 291-299. http://dx.doi.org/10.1016/S0740-0020(95)80109-XCrossrefGoogle Scholar

  • 22. Gong H. S., Meng X.C., Wang H. (2010). Plantaricin MG active against Gram negative bacteria produced by Lactobacillus plantarum KLDS1 isolated from “Jiaoke” a traditional fermented cream from China. Food Control, 21, 89-96. http://dx.doi.org/10.1016/j.foodcont.2009.04.005CrossrefWeb of ScienceGoogle Scholar

  • 23. Todorov., S. D., Dicks, L.M.T, (2005a). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36. 318-326. http://dx.doi.org/10.1016/j.enzmictec.2004.09.009CrossrefGoogle Scholar

  • 24. Laukova A., Czikkova S., Vasilkova Z., Juris P., Marekova M (1998). Occurrence of bacteriocin production among environmental enterococci. Letters in Applied microbiology 27, 178-182. http://dx.doi.org/10.1046/j.1472-765X.1998.00404.x PMid:9750323CrossrefGoogle Scholar

  • 25. Kwon DY, Koo M S, Ryoo CR, Kang CH, Min KH, Kim WJ (2002). Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12, 96-105.Google Scholar

  • 26. De Vuyst L., Foulquie Moreno M.R., Revets H. (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different originsInt. J. Food Microbiol., 84, 299-318. http://dx.doi.org/10.1016/S0168-1605(02)00425-7CrossrefGoogle Scholar

  • 27. Valenzuela AS, Ben-Omar N, Abriouel H, Lopez RL, Veljovic K, Canamero MM, Topisirovic MKL, Galvez A. (2009). Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control. 20, 381-385. http://dx.doi.org/10.1016/j.foodcont.2008.06.004CrossrefWeb of ScienceGoogle Scholar

  • 28. Martin-Platero, A. M., Valdivia E, Maqueda M, Martinez-Bueno M. (2009) . Characterization and safety evaluation of Enterococci isolated from Spanish goats’ milk cheeses. Int J of Food Microbiol, 132: 24-32. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.010 PMid:19375810CrossrefWeb of ScienceGoogle Scholar

  • 29. Joosten H. M., Rodriguez E, Nunez M (1997). PCR detection of sequences similar to the AS-48 structural gene in bacteriocin-producing enterococci. Lett Appl Microbiol. 24, 40-42. http://dx.doi.org/10.1046/j.1472-765X.1997.00349.x PMid:9024003CrossrefGoogle Scholar

  • 30. Ozdemir, G,B., Oryasin, E., Biyuik, H. H., Ozteber, M., Bozdogan, B. (2011). Phenotypic and genotypic characterisation of bacteriocins in enterococcal isolates of different sources. Indian Journal of Microbiology. 51 (2): pp 182-187.CrossrefWeb of ScienceGoogle Scholar

  • 31. Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. (1998). Comparative Studies of Class IIa Bacteriocins of Lactic Acid Bacteria. Appl Environ Microbiol.; 64 (9): 3275-3281. PMid:9726871 PMCid:PMC106721Google Scholar

  • 32. Wachsman, M. B., Castilla, V., de Ruiz Holgado, A. P., de Torres, R. A., Sesma, F., Coto, C. E. (2003). Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58, 17-24. http://dx.doi.org/10.1016/S0166-3542(02)00099-2Google Scholar

  • 33. Nes, I.F., Diep, D.B., Havarstein, L.S., Brurberg, M.B., Eijsink, V., Holo, H., (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70, 113-128. http://dx.doi.org/10.1007/BF00395929 PMid:8879403 CrossrefGoogle Scholar

  • 34. Franz, C.M.A.P., Holzaphel, W.H. Stiles, M.E. (1999). Enterococci at the crossroads of food safety? Int. J. Food. Microbiol. 47, 1-24. http://dx.doi.org/10.1016/S0168-1605(99)00007-0CrossrefGoogle Scholar

  • 35. Ben Omar, N., Castro, A., Lucas, R., Abriouel, H., Yousif, N.M.K., Franz, C.M.A.P., Holzapfel, W.H., Pérez-Pulido, R. et al. (2004). Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27, 118-130. http://dx.doi.org/10.1078/0723-2020-00248 PMid:15053328CrossrefGoogle Scholar

  • 36. Gálvez, A., Valdivia Hikmate Abriouel, E., Mendez, E.C., Martínez-Bueno, M, Maqueda, M. (1998). Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97Archives of Microbiology ; 171(1): 59-65.Google Scholar

  • 37. Eaton, T.J, Gasson, M.J. (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates Appl. Environ. Microbiol., 67, 1628-1635. http://dx.doi.org/10.1128/AEM.67.4.1628-1635.2001 PMid:11282615 PMCid:PMC92779 CrossrefGoogle Scholar

  • 38. Semedo T. S, Martins M. A., Lopes M. F. S., Figueiredo Marques J. J., Tenreiro R., Barreto Crespo M. T (2003). Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci J. Clin. Microbiol., 41, 2569-2576. http://dx.doi.org/10.1128/jcm.41.6.2569-2576.2003CrossrefGoogle Scholar

  • 39. Pangallo, D, Harichova, J, Karelova, E, Drahovska, H, Chovanova, K, Feriane, P, Turna, J, Timko, J. (2004). Molecular investigation of enterococci isolated from different environmental sources. Biologia 59, 829-837. Google Scholar

About the article

Received: 2015-06-15

Revised: 2015-07-28

Accepted: 2015-08-07

Published Online: 2015-11-18

Published in Print: 2015-10-01


Citation Information: Macedonian Veterinary Review, ISSN (Online) 1857-7415, DOI: https://doi.org/10.14432/j.macvetrev.2015.08.052.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in