Jump to ContentJump to Main Navigation
Show Summary Details

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year

SCImago Journal Rank (SJR) 2015: 0.203
Source Normalized Impact per Paper (SNIP) 2015: 0.565
Impact per Publication (IPP) 2015: 0.325

Open Access
See all formats and pricing

Application of Fluorescence Based Molecular Assays for Improved Detection and Typing of Brucella Strains in Clinical Samples

Kiril Krstevski
  • Corresponding author
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
  • Email:
/ Ivancho Naletoski
  • Animal Production and Health Section, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
/ Dine Mitrov
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Slavcho Mrenoshki
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Iskra Cvetkovikj
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Aleksandar Janevski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Aleksandar Dodovski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
/ Igor Djadjovski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
Published Online: 2015-11-18 | DOI: https://doi.org/10.14432/j.macvetrev.2015.09.055


Bacteria from the genus Brucella are causative agents of brucellosis - a zoonotic disease which affects many wild and domestic animal species and humans. Taking into account the significant socio-economic and public health impact of brucellosis, its control is of great importance for endemic areas. The chosen control strategy could be successful only if adapted to the current epidemiological situation. This implies that a choice of appropriate diagnostic procedures for detection and typing of Brucella spp. strains are of essential importance. Significant advancement of molecular techniques and their advantages compared to classical methods, give strong arguments in promotion of these techniques as a powerful tool for comprehensive diagnostics of brucellosis. Considering this, the major tasks of the study were to select and implement molecular tests for detection and genotyping Brucella spp. and evaluate their performances using DNA from cultivated brucellae (islolates) and limited number of tissue samples from seropositive animals. The obtained results confirmed that implemented real time PCR for Brucella spp. detection, as well as MLVA-16 used for genotyping, have excellent analytical sensitivity (4.2 fg of Brucella DNA were successfully detected and genotyped). Furthermore, compared to bacteriological cultivation of Brucella spp., real time PCR and MLVA-16 protocols showed superior diagnostic sensitivity and detected Brucella DNA in tissues from which Brucella could not be cultivated. Based on the summarized study results, we propose a diagnostic algorithm for detection and genotyping of Brucella spp. bacteria. Routine use of proposed diagnostic algorithm will improve the effectiveness of infection confirmation and help for accurate evaluation of epidemiological situation.

Keywords: brucellosis; clinical samples; DNA; real time PCR; MLVA-16


  • 1. Scholz, H.C., Vergnaud, G. (2013). Molecular characterisation of Brucella species. Rev. Sci. Tech Off. int. Epiz., 32 (1): 149-162.

  • 2. Whatmore, A. (2011). Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infec. Genet. Evol., 9(6): 1168-1184 http://dx.doi.org/10.1016/j.meegid.2009.07.001 PMid:19628055 [Crossref] [Web of Science]

  • 3. World Health Organization (2005). The control of neglected zoonotic diseases; a route to poverty alleviation. Zoonoses and Veterinary Public Health, WHO, Geneva, Switzerland.

  • 4. European Commission, Directorate General for Health and Consumers (2009). Working Document on Eradication of Bovine, Sheep and Goats Brucellosis in the EU.SANCO/6095/2009. Available at: http:// ec.europa.eu/food/animal/diseases/eradication/ eradication_bovine_sheep_goats_brucellosis_en.pdf. last access on 14/7/2015

  • 5. Scientific Committee on Animal Health and Animal Welfare (2001). Brucellosis in sheep and goat. SANCO.C.2/AH/R23/2001. Available at: http://ec.europa.eu/food/fs/sc/scah/out59_en.pdf. last access on 14/7/2015

  • 6. Garin-Bastuji, B., Blasco, J.M., Martın, C., Albert, D. (2006). The diagnosis of brucellosis in sheep and goats, old and new tools. Small Ruminant Research 62, 63-70. http://dx.doi.org/10.1016/j.smallrumres.2005.08.004 [Crossref]

  • 7. Poester, F.P, Nielsen, K., Samartino, L.E, Yu, W. L. (2010). Diagnosis of brucellosis. Open Vet. Sci. J., 4, 46-60. http://dx.doi.org/10.2174/1874318801004010046 [Crossref]

  • 8. World Organization for Animal Health - OIE (2014). Chapter 8.4. Infection with Brucellaabortus, B. melitensis and B. suis. In Terrestrial Animal Health Code. OIE, Paris, 2012.

  • 9. Hornitzky, M., Searson, J. (1986). The relationship between the isolation of Brucella abortus and serological status of infected, nonvaccinated cattle. Aust. Vet. J., 63, 172-174. http://dx.doi.org/10.1111/j.1751-0813.1986.tb02966.x PMid:3094489 [Crossref]

  • 10. Fekete, A., Bantlem, J.A., Hallingm, S.M., Sanborn, M.R. (1990). Preliminary development of a diagnostic test for Brucella using polymerase chain reaction. J. Appl. Bacteriol., 69, 216-227. http://dx.doi.org/10.1111/j.1365-2672.1990.tb01512.x [Crossref]

  • 11. Bounaadja, L., Albert, D., Chenais, B., Henault, S., Zygmunt, M.S., Poliak, S., Garin-Bastuji, B. (2009). Real-time PCR for identfication of Brucella spp.: A comparative study of IS711, bcsp31 and per target genes. Vet. Microbiol., 137, 156-164. http://dx.doi.org/10.1016/j.vetmic.2008.12.023 PMid:19200666 [Crossref] [Web of Science]

  • 12. Leal-Klevezas, D.S. et al. (1995). Single-step PCR for detection of Brucella spp. from blood and milk of infected animals, J. Clin. Microbiol., 12, 3087.

  • 13. Ouahrani-Bettache, S., Soubrier, M.P., Liautard, J.P. (1996). IS6501-anchored PCR for the detection and identification of Brucella species and strains. J. Appl. Bacteriol., 81, 154-160. http://dx.doi.org/10.1111/j.1365-2672.1996.tb04493.x PMid:8760325 [Crossref]

  • 14. Rijpens, N.P.,Jannes, G., Van Asbroeck, M., Rossau, R., Herman, L.M. (1996). Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes. Appl. Environ. Microbiol., 62(5): 1683-1688. PMid:8633866 PMCid:PMC167942

  • 15. Romero, C.,Gamazo, C., Pardo, M., López-Goñi, I. (1995). Specific detection of Brucella DNA by PCR. J. Clin. Microbiol., 33(3): 615-617. PMid:7538508 PMCid:PMC227999

  • 16. Yu, W.L., Nielsen, K. (2010). Review of detection of Brucella spp. by polymerase chain reaction. Croat. med. J., 51(4): 306-313. http://dx.doi.org/10.3325/cmj.2010.51.306 PMid:20718083 PMCid:PMC2931435 [Crossref]

  • 17. Bricker, B.J., Halling, S.M. (1994). Differentiation of Brucella abortus bv.1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv.1 by PCR. J. Clin. Microbiol., 32, 2660 -2666. PMid:7852552 PMCid:PMC264138

  • 18. Bricker, B.J., Halling, S.M. (1995). Enhancement of the Brucella AMOS-PCR assay for differentiation of Brucella abortus vaccine strains S19 and RB51. J. Clin. Microbiol., 33, 1640-1642. PMid:7650203 PMCid:PMC228233

  • 19. Lopez-Goni, I., Garcia-Yoldi, D., Marin, C.M., de Miguel, M.J., Muñoz, P.M., Blasco, J.M., Jacques, I., Grayon, M., Cloeckaert, A., Ferreira, A.C., Cardoso, R., Corrêa de Sá, M.I., Walravens, K., Albert, D., Garin-Bastuji, B. (2008). Evaluation of a multiplex PCR assay (bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J. Clin. Microbiol.,46, 3484-3487. http://dx.doi.org/10.1128/JCM.00837-08 PMid:18716225 PMCid:PMC2566117 [Crossref]

  • 20. García-Yoldi, D., Marín, C.M., de Miguel, M.J., Muñoz, P.M., Vizmanos, J.L., López-Goñi, I. (2006). Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis. Rev1. Clin Chem., 52(4): 779-781. http://dx.doi.org/10.1373/clinchem.2005.062596 PMid:16595839 [Crossref]

  • 21. Probert, W.S., Schrader, K.N., Khuong, N.Y., Bystrom, S.L., Graves, M.H. (2004). Real-time multiplex PCR assay for detection of Brucella spp., B.abortus, and B. melitensis. J. Clin. Microbiol., 42, 1290-1293. http://dx.doi.org/10.1128/JCM.42.3.1290-1293.2004 PMid:15004098 PMCid:PMC356861 [Crossref]

  • 22. Al Dahouk, S., Le Flèche, P., Nöckler, K. et al. (2007). Evaluation of Brucella MLVA typing for human brucellosis. J. Microbiol. Meth., 69, 137-145. http://dx.doi.org/10.1016/j.mimet.2006.12.015 PMid:17261338 [Crossref]

  • 23. Bricker, B.J., Ewalt, D.R., Halling, S.M. (2003). Brucella “HOOF Prints”: strain typing by multilocus analysis of variable number tandem repeats (VNTRs). BMC Microbiol., 3, 15. http://dx.doi.org/10.1186/1471-2180-3-15 PMid:12857351 PMCid:PMC183870 [Crossref]

  • 24. Le Flèche, P., Jacques, I., Grayon, M., Al Dahouk, S., Bouchon, P., Denoeud, F., Nockler, K., Neubauer, H., Guilloteau, L.A., Vergnaud G. (2006). Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol., 6, 9. http://dx.doi.org/10.1186/1471-2180-6-9 PMid:16469109 PMCid:PMC1513380 [Crossref]

  • 25. Whatmore, A.M., Perrett, L.L., Macmillan, A.P. (2007). Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol., 7, 34. http://dx.doi.org/10.1186/1471-2180-7-34 PMid:17448232 PMCid:PMC1877810 [Crossref]

  • 26. Ferreira, A.C., Chambel, L., Tenreiro, T., Cardoso, R. et al. (2012). MLVA16 typing of Portuguese human and animal Brucella melitensis and Brucella abortus isolates. PLoS One 7, e42514. http://dx.doi.org/10.1371/journal.pone.0042514 PMid:22905141 PMCid:PMC3419166 [Crossref]

  • 27. Garofolo, G., Di Giannatale, E., De Massis, F., Zilli, K., Ancora, M., et al. (2013): Investigating genetic diversity of Brucella abortus and Brucella melitensis in Italy with MLVA-16. Infect. Genet. Evol.19, 59-70. http://dx.doi.org/10.1016/j.meegid.2013.06.021 PMid:23831636 [Web of Science] [Crossref]

  • 28. Her, M., Kang, S.I., Cho, D.H., Cho, Y.S., Hwang, I.Y., et al. (2009). Application and evaluation of the MLVA typing assay for the Brucella abortus strains isolated in Korea. BMC Microbiol., 9, 230. http://dx.doi.org/10.1186/1471-2180-9-230 PMid:19863821 PMCid:PMC2774859 [Crossref]

  • 29. Jiang, H., Fan, M., Chen, J., Mi, J., Yu, R., et al. (2011). MLVA genotyping of Chinese human Brucella melitensis biovar 1, 2 and 3 isolates. BMC Microbiol., 11, 256. http://dx.doi.org/10.1186/1471-2180-11-256 PMid:22108057 PMCid:PMC3233519 [Crossref]

  • 30. Jiang, H., Wang, H., Xu, L., Hu, G., Ma, J., et al. (2013). MLVA genotyping of Brucella melitensis and Brucella abortus isolates from different animal species and humans and identifi cation of Brucella suis vaccine strain S2 from cattle in China. PLoS One, 8, e76332 http://dx.doi.org/10.1371/journal.pone.0076332 [Web of Science] [Crossref]

  • 31. Kang, S.I., Heo, E.J., Cho, D., Kim, J.W., Kim, J.Y., et al. (2011). Genetic comparison of Brucella canis isolates by the MLVA assay in South Korea. J. Vet. Med. Sci.73, 779-786. http://dx.doi.org/10.1292/jvms.10-0334 [Crossref]

  • 32. Kiliç, S., Ivanov, I.N., Durmaz, R., Bayraktar, M.R., et al. (2011). Multiple-locus variable-number tandemrepeat analysis genotyping of human Brucella isolates from Turkey. J. Clin. Microbiol. 49, 3276-3283. http://dx.doi.org/10.1128/JCM.02538-10 PMid:21795514 PMCid:PMC3165627 [Crossref]

  • 33. Marianelli, C., Petrucca, A., Pasquali, P., Ciuchini, F., Papadopoulou, S., Cipriani, P. (2008). Use of MLVA-16 typing to trace the source of a laboratory-acquired Brucella infection. J. Hosp. Infect. 68, 274-276. http://dx.doi.org/10.1016/j.jhin.2008.01.003 PMid:18289724 [Crossref]

  • 34. Menshawy, A.M., Perez-Sancho, M., Garcia-Seco, T., Hosein, H.I., García, N., Martinez, I., Sayour, A.E., Goyache, J., Azzam, R.A., Dominguez, L. (2014). Assessment of genetic diversity of zoonotic Brucella spp. recovered from livestock in Egypt using multiple locus VNTR analysis. Biomed. Res. Int., 2014:353876. [Web of Science]

  • 35. Mick, V., Le Carrou, G., Corde, Y., Game, Y., Jay, M. et al. (2014). Brucella melitensis in France: Persistence in wildlife and probable spillover from alpine ibex to domestic animals. PLoS ONE, 9(4): e94168. http://dx.doi.org/10.1371/journal.pone.0094168 PMid:24732322 PMCid:PMC3986073

  • 36. Bosilkovski, M. (2015). Brucellosis: It is not only Malta! In A. Sing (Ed.), Zoonozes - Infections Affecting Humans and Animals (pp. 287-316). Springer Science+Business Media Dordrecht. ISBN 978-94-017-9456-5. http://dx.doi.org/10.1007/978-94-017-9457-2_11 [Crossref]

  • 37. Newby, D.T., Hadfield, T.L., Roberto, F.F. (2003). Real-time PCR detection of Brucella abortus: a comparative study of SYBR green I, 59-exonuclease, and hybridization probe assays. Appl. Environ. Microbiol., 69, 4753-4759. http://dx.doi.org/10.1128/AEM.69.8.4753-4759.2003 PMid:12902268 PMCid:PMC169142 [Crossref]

  • 38. Redkar, R., Rose, S., Bricker, B., Del Vecchio, V. (2001). Real-time detection of Brucella abortus, Brucella melitensis and Brucella suis. Mol. Cell. Probes, 15, 43-52. http://dx.doi.org/10.1006/mcpr.2000.0338 PMid:11162079 [Crossref]

  • 39. Hinić, V., Brodard, I., Thomann, A., Holub, M., Miserez, R., Abril, C. (2009). IS711-based real-time PCR assay as a tool for detection of Brucella spp. in wild boars and comparison with bacterial isolation and serology. BMC Vet. Res., 5, 22. http://dx.doi.org/10.1186/1746-6148-5-22 PMid:19602266 PMCid:PMC2719624 [Web of Science]

  • 40. Ilhan, Z., Aksakal, A., Ekin, I.H., Gulhan, T., Solmaz, H., Erdenlig. S. (2008). Comparison of culture and PCR for the detection of Brucella melitensis in blood and lymphoid tissues of serologically positive and negative slaughtered sheep. Lett. Appl. Microbiol., 46(3): 301-306. http://dx.doi.org/10.1111/j.1472-765X.2007.02309.x PMid:18179446 [Crossref] [Web of Science]

About the article

Received: 2015-07-16

Revised: 2015-09-04

Accepted: 2015-09-10

Published Online: 2015-11-18

Published in Print: 2015-10-01

Citation Information: Macedonian Veterinary Review, ISSN (Online) 1857-7415, DOI: https://doi.org/10.14432/j.macvetrev.2015.09.055. Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in