Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2016: 0.161
Source Normalized Impact per Paper (SNIP) 2016: 0.368

Open Access
Online
ISSN
1857-7415
See all formats and pricing
More options …

Bovine Tuberculosis in the Republic of Macedonia: Postmortem, Microbiological and Molecular Study in Slaughtered Reactor Cattle

Iskra Cvetkovikj
  • Corresponding author
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Slavcho Mrenoshki
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kiril Krstevski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor Djadjovski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Branko Angjelovski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zagorka Popova
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandar Janevski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandar Dodovski
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandar Cvetkovikj
  • Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Macedonia (the former Yugoslav Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-14 | DOI: https://doi.org/10.1515/macvetrev-2016-0097

Abstract

Bovine tuberculosis is a chronic infectious disease in cattle caused mainly by Mycobacterium bovis and to a lesser extent by Mycobacterium caprae. The other members of the Mycobacterium tuberculosis complex (MTBC) can also cause the disease in domestic and wild animals and all of them have a zoonotic potential. The main purpose of the study was to determine the presence and distribution of the tuberculous lesions in reactor cattle, and to isolate and identify the causative agents of bovine tuberculosis in the Republic of Macedonia. Lymph nodes and affected organs from 188 reactor cattle slaughtered due to a positive intradermal comparative cervical tuberculin test were analyzed by detection of tuberculous lesions, followed by isolation and molecular identification of the isolated mycobacteria. The isolation was performed on selective media - Lowenstein Jensen with glycerol, Lowenstein Jensen without glycerol and Stonebrink medium supplemented with pyruvate. The molecular identification of the MTBC members was performed by analysis of the Regions of difference (RD1, RD9 and RD4) and detection of single nucleotide polymorphisms in the lepA gene for Mycobacterium caprae. Typical tuberculous lesions were detected in 62 animals (33.0%) and the lesions were most prevalent in the mediastinal lymph nodes (47.5%). The isolated mycobacteria in the MTBC were identified as Mycobacterium bovis and Mycobacterium caprae and were found in both animals with visible lesions (82.2%) and animals without visible lesions (27.7%). The slaughterhouse postmortem examinations and laboratory investigations should be included on regular bases in order to improve the National eradication program.

Keywords: bovine tuberculosis; Mycobacterium bovis; Mycobacterium caprae; PCR; Republic of Macedonia

References

  • 1. O’Reilly, L.M., Daborn, C.J. (1995). The epidemiology of Mycobacterium bovis infections in animals and man. A review. Tuber Lung Dis. 76 (1): 1-46. https://doi.org/10.1016/0962-8479(95)90591-XCrossrefGoogle Scholar

  • 2. Pesciaroli, M., Alvarez, J., Boniotti, M.B., Cagiola, M., Di Marco V., Marianelli, C., Pacciarini, M., Pasquali, P. (2014). Tuberculosis in domestic animal species. Res Vet Sci. 97, Suppl. S78-85. https://doi.org/10.1016/j.rvsc.2014.05.015 PMid:25151859CrossrefGoogle Scholar

  • 3. Task force bovine tuberculosis subgroup. Working document on eradication of bovine tuberculosis in the EU accepted by the Bovine tuberculosis subgroup of the Task Force on monitoring animal disease eradication. (2006). SANCO/10200/2006. http://ec.europa.eu/food/animal/diseases/eradication/tb_workingdoc2006_en.pdfGoogle Scholar

  • 4. Brosch, R., Gordon, S., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., Parsons, L., Pym, A., Samper, S., Soolingen, D., Cole, S. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. P Natl Acad Sci USA. 99 (6): 3684-3689. https://doi.org/10.1073/pnas.052548299 PMid:11891304 PMCid:PMC122584CrossrefGoogle Scholar

  • 5. Schiller, I., Waters, W.R., Vordermeier, H.M., Jemmi, T., Welsh, M., Keck, N., Whelan, A., Gormley, E., Boschiroli, M.L., Moyen, J.L., Vela, C., Cagiola, M., Buddle, B.M., Palmer, M., Thacker, T., Oesch, B. (2011). Bovine tuberculosis in Europe from the perspective of an officially tuberculosis free country: trade, surveillance and diagnostics. Vet Microbiol. 151 (1): 153-159. https://doi.org/10.1016/j.vetmic.2011.02.039 PMid:21439740CrossrefGoogle Scholar

  • 6. Shitaye J.E., Tsegaye W., Pavlik I. (2007). Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Vet Med (Praha) 52 (8): 317-332.Google Scholar

  • 7. Muller, B., Durr, S., Alonso, S., Hattendorf, J., Laisse, C.J., Parsons, S.D., Van Helden, P.D., Zinsstag, J. (2013). Zoonotic Mycobacterium bovisinduced tuberculosis in humans. Emerg Infect Dis. 19 (6): 899-908. https://doi.org/10.3201/eid1906.120543 PMid:23735540 PMCid:PMC4816377CrossrefGoogle Scholar

  • 8. Gramatikovski, G., Stojanoski, B. (1985). Epidemiological situation of infectious diseases in Socialistic Republic of Macedonia 1927-1977. Veterinary Institute Skopje. (in Macedonian).Google Scholar

  • 9. Nikolovski, G., Petrov, E.A., Cokrevski, S., Arsevska, E., Nikolovska, G. (2012) Bovine tuberculosis in cattle during the implementation of official control measures in Republic of Macedonia for the period 2007-2009. Slov Vet Res 49 (2): 79-87.Google Scholar

  • 10. Food and Veterinary Agency of Republic of Macedonia (2007). Program for eradication of bovine tuberculosis. Official Gazette of Republic of Macedonia No. 22/2007. (in Macedonian). http://fva.gov.mk/images/PROGRAMA_NA_TUBERKULOZATA_KAJ_GOVEDATA.pdfGoogle Scholar

  • 11. OIE. (2009). Bovine tuberculosis. Manual for diagnostic tests and vaccines for terrestrial animals. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.07_BOVINE_TB.pdfGoogle Scholar

  • 12. Corner, L.A., Gormley, E., Pfeiffer, D.U. (2012). Primary isolation of Mycobacterium bovis from bovine tissues: conditions for maximising the number of positive cultures. Vet Microbiol. 156 (1): 162-171. https://doi.org/10.1016/j.vetmic.2011.10.016 PMid:22074859CrossrefGoogle Scholar

  • 13. Gormley, E., Corner, L.A., Costello, E., Rodriguez- Campos, S. (2014). Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci. 97 Suppl, S30-43. https://doi.org/10.1016/j.rvsc.2014.04.010 PMid:24833269CrossrefGoogle Scholar

  • 14. Pinsky, B.A., Banaei, N. (2008). Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol. 46 (7): 2241-2246. https://doi.org/10.1128/JCM.00347-08 PMid:18508937 PMCid:PMC2446918CrossrefGoogle Scholar

  • 15. Domogalla, J., Prodinger, W.M., Blum, H., Krebs, S., Gellert, S., Muller, M., Neuendorf, E., Sedlmaier, F., Buttner, M. (2013). Region of difference 4 in alpine Mycobacterium caprae isolates indicates three variants. J Clin Microbiol. 51 (5): 1381-1388. https://doi.org/10.1128/JCM.02966-12 PMid:23408688 PMCid:PMC3647898Google Scholar

  • 16. Reddington, K., O’Grady, J., Dorai-Raj, S., Niemann, S., van Soolingen, D., et al. (2011). A novel multiplex Real-Time PCR for the identification of Mycobacteria associated with zoonotic tuberculosis. PLoS One 6 (8): e23481. https://doi.org/10.1371/journal.pone.0023481 PMid:21858140 PMCid:PMC3153498CrossrefGoogle Scholar

  • 17. Rivière, J., Carabin, K., Le Strat, Y., Hendrikx, P., Dufour, B. (2014). Bovine tuberculosis surveillance in cattle and free-ranging wildlife in EU Member States in 2013: a survey-based review. Vet Microbiol. 173 (3): 323-331. https://doi.org/10.1016/j.vetmic.2014.08.013 PMid:25205200CrossrefGoogle Scholar

  • 18. Schiller, I., Oesch, B., Vordermeier, H.M., Palmer, M.V., Harris, B.N., Orloski, K.A., Buddle,B.M., Thacker, T.C., Lyashchenko, K.P., Waters, W.R. (2010). Bovine tuberculosis. A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound Emerg Dis. 57 (4): 205-220. https://doi.org/10.1111/j.1865-1682.2010.01148.xCrossrefGoogle Scholar

  • 19. Fitzgerald, S.D., Hollinger, C., Mullaney, T.P., Bruning-Fann, C.S., Tilden, J., Smith, R., Averill, J., Kaneene, J.B. (2016). Herd outbreak of bovine tuberculosis illustrates that route of infection correlates with anatomic distribution of lesions in cattle and cats. J Vet Diagn Invest. 28 (2): 129-132. https://doi.org/10.1177/1040638715626484 PMid:26965232CrossrefGoogle Scholar

  • 20. Pritchard, D.G. (1988). A century of bovine tuberculosis 1888-1988: conquest and controversy. Comp Clin Path. 99 (4): 357-399. https://doi.org/10.1016/0021-9975(88)90058-8CrossrefGoogle Scholar

  • 21. Whipple, D.L., Bolin, C.A., Miller, J.M. (1996). Distribution of lesions in cattle infected with Mycobacterium bovis. J Vet Diagn Invest. 8 (3): 351-354. https://doi.org/10.1177/104063879600800312 PMid:8844579 CrossrefGoogle Scholar

  • 22. Corner, L.A. (1994). Post mortem diagnosis of Mycobacterium bovis infection in cattle. Vet Microbiol. 40 (1): 53-63. https://doi.org/10.1016/0378-1135(94)90046-9CrossrefGoogle Scholar

  • 23. Ministry of Agriculture, Food and Environment (2013). National Eradication Program for Bovine tuberculosis in Spain for 2013. (in Spanish) http://rasve.magrama.es/Publica/Programas/NORMATIVA%20Y20PROGRAMAS%5CPROGRAMAS%5C2013%5CTUBERCULOSIS%20BOVINA%5CPROGRAMA%20TB%202013.PDFGoogle Scholar

  • 24. European Commission Health & Consumer Protection Directorate-General Veterinary and International Affairs Unit G5 - Veterinary Programmes. (2013). Working Document on eradication of Bovine tuberculosis in the EU.SANCO/10067/2013Google Scholar

  • 25. Croatian Ministry of agriculture (2015). Annual order for animal protection from infectious and parasitic diseases for 2016. Official Gazette of Croatia No. 141/2015 (in Croatian) http://narodne-novine.nn.hr/clanci/sluzbeni/2016_04_31_846.htmlGoogle Scholar

  • 26. Boritsch, E.C., Supply, P., Honore, N., Seeman, T., Stinear, T. P., Brosch, R. (2014). A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol. Microbiol. 93 (5): 835-852. https://doi.org/10.1111/mmi.12720 PMid:25039682CrossrefGoogle Scholar

  • 27. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A., Behr, M.A. (2002). Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis. 186 (1): 74-80. https://doi.org/10.1086/341068 PMid:12089664CrossrefGoogle Scholar

  • 28. Huard, R.C., Lazzarini, L.C., Butler, W.R., van Soolingen, D., Ho, J.L. (2003). PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J. Clin. Microbiol. 41 (4): 1637-1650. https://doi.org/10.1128/JCM.41.4.1637-1650.2003 PMid:12682155 PMCid:PMC153936CrossrefGoogle Scholar

  • 29. Warren, R.M., Gey van Pittius, N.C., Barnard, M., Hesseling, A., Engelke, E., de Kock, M., Gutierrez, M.C., Chege, G.K., Victor, T.C., Hoal, E.G., van Helden, P.D. (2006). Differentiation of Mycobacterium tuberculosis complex by PCR amplification of geno- mic regions of difference. Int. J. Tuberc. Lung Dis. 10 (7): 818-822. PMid:16850559Google Scholar

  • 30. Pounder, J.I., Anderson, C.M., Voelkerding, K.V., Salfinger, M., Dormandy, J., Somoskovi, A., Heifets, L., Graham, J.J., Storts, D.R., Petti, C.A. (2010). Mycobacterium tuberculosis complex differentiation by genomic deletion patterns with multiplex polymerase chain reaction and melting analysis. Diagn. Microbiol. Infect. Dis. 67 (1): 101-105. https://doi.org/10.1016/j.diagmicrobio.2009.12.014 PMid:20227227CrossrefGoogle Scholar

  • 31. Rettinger, A., Broecki, S., Fink, M., Prodinger, W.M., blum, H., Krebs, S., Domogalla, J., Just, F., Gellert, S., Straubinger, R.K., Buttner M. (2015). The region of difference four is a robust genetic marker for subtyping Mycobacterium caprae Isolates and is linked to spatial distribution of three subtypes. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12438 PMid:26518998CrossrefGoogle Scholar

  • 32. Rodriguez, S., Bezos, J., Romero, B., de Juan, L., Alvarez, J., Castellanos, E., Moya, N., Lozano, F., Javed, M.T., Saez-Llorente, J.L., Liebana, E., Mateos, A., Dominguez, L., Aranaz, A. (2011). Mycobacterium caprae infection in livestock and wildlife. Spain. Emerg. Infect. Dis. 17 (3): 532-535. https://doi.org/10.3201/eid1703.100618 PMid:21392452 PMCid:PMC3165998CrossrefGoogle Scholar

  • 33. Munyeme, M., Rigouts, L., Shamputa, I.C., Muma, J.B., Tryland, M., Skjerve, E., Djønne, B. (2009). Isolation and characterization of Mycobacterium bovis strains from indigenous Zambian cattle using Spacer oligonucleotide typing technique. BMC microbiology 9 (1):1. https://doi.org/10.1186/1471-2180-9-144 PMid:19619309 PMCid:PMC2719650CrossrefGoogle Scholar

  • 34. Proano-Pérez, F., Benitez-Ortiz, W., Desmecht, D., Coral, M., Ortiz, J., Ron, L., Portaels, F., Rigouts, L., Linden, A. (2011). Post-mortem examination and laboratory-based analysis for the diagnosis of bovine tuberculosis among dairy cattle in Ecuador. Prev Vet Med. 101 (1): 65-72. https://doi.org/10.1016/j.prevetmed.2011.04.018 PMid:21645934CrossrefGoogle Scholar

  • 35. Nassar, A.F.C., Miyashiro, S., Oliveira, C.G., Pacheco, W.A. and Ogata, R.A. (2007). Isolation and identification of bovine tuberculosis in a Brazilian herd (São Paulo). Mem Inst Oswaldo Cruz. 102 (5): 639-642. https://doi.org/10.1590/S0074-02762007005000073 PMid:17710311CrossrefGoogle Scholar

  • 36. Shittu, А., Clifton-Hadley, R.S., Ely, E.R., Upton, P.U., Downs, S.H. (2008). Factors associated with bovine tuberculosis confirmation rates in suspect lesions found in cattle at routine slaughter in Great Britain, 2003-2008. Prev Vet Med. 110 (3): 395- 404. Web of ScienceGoogle Scholar

  • 37. Courcoul, A., Moyen, J.L., Brugere, L., Faye, S., Henault, S., Gares, H., Boschiroli, M.L. (2014). Estimation of sensitivity and specificity of bacteriology, histopathology and PCR for the confirmatory diagnosis of bovine tuberculosis using latent class analysis. PloS one 9(3): p.e90334. https://doi.org/10.1371/journal.pone.0090334 PMid:24625670 PMCid:PMC3953111CrossrefGoogle Scholar

  • 38. Duignan, A., Good, M., More, S.J. (2012). Quality control in the national bovine tuberculosis eradication programme in Ireland. Rev. Sci. Tech. Off. Int. Epiz. 31, 845-860. https://doi.org/10.20506/rst.31.3.2166CrossrefGoogle Scholar

  • 39. Good, M., Duignan, A. (2011). An evaluation of the Irish Single Reactor Breakdown Protocol for 2005 to 2008 inclusive and its potential application as a monitor of tuberculin test performance. Vet. Microbiol. 151 (1): 85 -90. https://doi.org/10.1016/j.vetmic.2011.02.029 PMid:21441002CrossrefGoogle Scholar

  • 40. De la Rua-Domenech, R., Goodchild, A.T., Vordermeier, H.M., Hewinson, R.G., Christiansen, K.H., Clifton-Hadley, R.S. (2006). Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res Vet Sci. 81 (2): 190-210. https://doi.org/10.1016/j.rvsc.2005.11.005 PMid:16513150CrossrefGoogle Scholar

  • 41. Cvetnic, Z., Katalinic-Jankovic, V., Sostaric, B., Spicic, S., Obrovac, M., Marjanovic, S., Benic, M., Kirin, B.K., Vickovic, I. (2007). Mycobacterium caprae in cattle and humans in Croatia. Int J Tuberc Lung Dis. 11 (6): 652-658. PMid:17519097Google Scholar

  • 42. Beširović, H., Alić, A., Špičić, S., Cvetnić, Ž., Prašović, S., Velić, L. (2012). Bovine tuberculosis in Bosnia and Herzegovina caused by Mycobacterium caprae. Vet Arhiv. 82 (4): 341-349.Google Scholar

  • 43. Boniotti, M.B., Goria, M., Loda, D., Garrone, A., Benedetto, A., Mondo, A., Tisato, E., Zanoni, M., Zoppi, S., Dondo, A., Tagliabue, S., Bonora, S., Zanardi, G., Pacciarini, M.L. (2009). Molecular typing of Mycobacterium bovis strains isolated in Italy from 2000 to 2006 and evaluation of variablenumber- tandem-repeats for a geographic optimized genotyping. J Clin Microbiol. 47 (3): 636-644. https://doi.org/10.1128/JCM.01192-08 PMid:19144792 PMCid:PMC2650904Google Scholar

  • 44. Prodinger, W.M., Brandstätter, A., Naumann, L., Pacciarini, M., Kubica, T., Boschiroli, M.L., Aranaz, A., Nagy, G., Cvetnic, Z., Ocepek, M., Skrypnyk, A., Erler, W., Niemann, S., Pavlik, I., Moser, I. (2005). Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping. J Clin Microbiol. 43 (10): 4984-4992. https://doi.org/10.1128/JCM.43.10.4984-4992.2005 PMid:16207952 PMCid:PMC1248478CrossrefGoogle Scholar

  • 45. Sahraoui, N., Muller, B., Guetarni, D., Boulahbal, F., Yala, D., Ouzrout, R., Berg, S., Smith, N.H., Zinsstag, J. (2009). Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet Res. 5 (1): 4. https://doi.org/10.1186/1746-6148-5-4 PMid:19173726 PMCid:PMC2640374CrossrefGoogle Scholar

  • 46. Zeng, W., Zhang, Y., Zhao, X., Huang, G., Jiang, Y., Dong, H., Li, X., Wan K., He, C. (2013). Occurrence of non-tuberculous mycobacteria species in livestock from northern China and first isolation of Mycobacterium caprae. Epidemiol Infect. 141 (7): 1545-1551. https://doi.org/10.1017/S0950268812003020 PMid:23298678CrossrefGoogle Scholar

  • 47. Shitaye, J.E., Getahun, B., Alemayehu, T., Skoric, M., Treml, F., Fictum, P., Vrbas, V., Pavlik, I. (2006). A prevalence study of bovine tuberculosis by using abattoir meat inspection and tuberculin skin testing data, histopathological and IS6110 PCR examination of tissues with tuberculous lesions in cattle in Ethiopia. Vet Med (Praha). 51 (11): 512-522.Google Scholar

  • 48. European Food and safety Authority. (2014). The European Union Summary Report on Trends and Sources of Zoonoses. Zoonotic Agents and Foodborne Outbreaks in 2012. EFSA Journal 12 (2): 3547 (pp 312).Google Scholar

  • 49. Rodriguez, E., Sanchez, L.P., Perez, S., Herrera, L., Jimenez, M.S., Samper, S., Iglesias, M.J. (2009). Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004-2007. Int J Tuberc Lung D. 13 (12): 1536-1541. PMid:19919773 Google Scholar

About the article

Received: 2016-07-01

Revised: 2016-12-02

Accepted: 2016-11-29

Published Online: 2017-03-14

Published in Print: 2017-03-01


Citation Information: Macedonian Veterinary Review, Volume 40, Issue 1, Pages 43–52, ISSN (Online) 1857-7415, DOI: https://doi.org/10.1515/macvetrev-2016-0097.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vladimir Polaček, Dejan Vidanović, Biljana Božić, Žolt Beckei, Ivana Vučićević, Jasna Prodanov-Radulović, and Sanja Aleksić-Kovacević
Macedonian Veterinary Review, 2017, Volume 0, Number 0
[2]
Vladimir Polaček and Sanja Aleksić-Kovačević
Acta Veterinaria, 2016, Volume 66, Number 4

Comments (0)

Please log in or register to comment.
Log in