Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Macedonian Veterinary Review

The Journal of the Faculty of Veterinary Medicine-Skopje at the Ss. Cyril and Methodius University in Skopje

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2016: 0.161
Source Normalized Impact per Paper (SNIP) 2016: 0.368

Open Access
Online
ISSN
1857-7415
See all formats and pricing
More options …

Occurrence and Antibiogram of Generic Extendedspectrum Cephalosporin-Resistant and Extended-Spectrum Β-Lactamase-Producing Enterobacteria in Horses

Madubuike Umunna Anyanwu
  • Corresponding author
  • Department of Veterinary Pathology and Microbiology, University of Nigeria, 400001 Nsukka Enugu State Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ifeoma Chinyere Ugwu
  • Department of Veterinary Pathology and Microbiology, University of Nigeria, 400001 Nsukka Enugu State Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Collins Uchenna Onah
  • Department of Veterinary Pathology and Microbiology, University of Nigeria, 400001 Nsukka Enugu State Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-26 | DOI: https://doi.org/10.2478/macvetrev-2018-0015

Abstract

This study was conducted to isolate generic extended-spectrum cephalosporin (ESC)-resistant and extended-spectrum β-lactamase (ESBL)-producing enterobacteria from horses in Nigeria, and to determine the antibacterial resistance profile. Rectal swabs were collected from 155, systematic randomly selected, apparently-healthy horses. Isolation of ESC-resistant enterobacteria was done using Mac Conkey agar with ceftazidime. ESBL production was assessed by combination disc method. Resistance of the isolates was determined using disc diffusion method. Out of 155 samples, 5.2% gave positive growth. From these, 11 ESC-resistant enterobacteria comprising of 36.4% E. coli, 36.4% Salmonella spp. and 27.2% Proteus spp., were obtained. From 11 isolates, 45.5% consisting of all the 4 E. coli and 1 Proteus isolates, were ESBL-producers, these were recovered from 4 (2.6%) out of the 155 horses sampled. Resistance of the E. coli isolates was 25% to aztreonam (AZT), 75% to amoxicillin-clavulanic acid (AMC), gentamicin (GEN), perfloxacin (PEF), and sulphamethoxazoletrimethoprim (SXT-TRI), 50% to ofloxacin (OFL) and 100% to ampicillin (AMP), ceftazidime (CTZ), cefotaxime (CTX), chloramphenicol (CHL), streptomycin (STR), tetracycline (TET), sparfloxacin (SPA), ciprofloxacin (CIP), norfloxacin (NOR) and enrofloxacin (ENR). Resistance of the Salmonella isolates was 50% to PEF and 100% to CTZ, CTX, AMP, AZT, AMC, CHL, GEN, STR, TET, SPA, CIP, OFL, NOR and ENR. Resistance of the Proteus isolates was 25% to AMC, CHL, STR, TET, SPA and NOR, and 100% to CTZ, CTX, AZT and AMP. Resistance of the isolates to more than 3 classes of antibacterial agents tested was 75% for Proteus and 100% for E. coli and Salmonella, respectively. This study showed that horses in Nigeria are potential reservoirs and disseminators of ESC-resistant and ESBL-producing Enterobacteriaceae.

Keywords: antibiogram; extended-spectrum cephalosporin-resistant; extended-spectrum β-lactamase-producing; Enterobactericeae; equine

References

  • 1. Huber, H., Zweifel, C., Wittenbrink, M.M., Roger, S. (2013). ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet Microbiol. 162, 992-996. https://doi.org/10.1016/j.vetmic.2012.10.029 PMid:23177909CrossrefGoogle Scholar

  • 2. Apostolakos, I., Franz, E., van Hoek, A.H.A.M., Florijn, A., Veenman, C., Sloet-van Oldruitenborgh-Oosterbaan, M.M., Dierikx, C., van Duijkeren, E. (2017). Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J Antimicrob Chemother. 72 (7): 1915-1921. https://doi.org/10.1093/jac/dkx072 PMid:28333298CrossrefGoogle Scholar

  • 3. World Health Organization (WHO) (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdfGoogle Scholar

  • 4. Dierikx, C.M., van Duijkeren, E., Schoormans, A.H., van Essen-Zandbergen, A., Veldman, K., Kant A., Huijsdens XW., van der Zwaluw K., Wagenaar JA., Mevius DJ. (2012). Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpCproducing clinical isolates derived from companion animals and horses. J Antimicrob Chemother. 67(6): 1368-1374. https://doi.org/10.1093/jac/dks049 PMid:22382469CrossrefGoogle Scholar

  • 5. Olusa, T.A.O., Adegunwa, A.K., Aderonmu, A.A., Adeyefa, C.A.O. (2010). Serologic evidence of equine H7 influenza virus in polo horses in Nigeria. Sci World J. 5(2):17-19. https://doi.org/10.4314/swj.v5i2.61509CrossrefGoogle Scholar

  • 6. Turaki, U.A., Kumsha, H.A., Biu, A.A., Bokko, P.B. (2014). Prevalence of piroplasmosis amongst local horses in Northeastern Nigeria. IOSR J Agric Vet Sci. 7(12): 4-7.Google Scholar

  • 7. Ehizibolo, D.O., Kamani, J., Eizibolo, P.O., Egwu, K.O., Dogo, G.I., Salami-Shinaba, J.O. (2012). Prevalence and significance of parasites of horses in some states of Northern Nigeria. J Equine Sci. 23(1): 1-4. https://doi.org/10.1294/jes.23.1 PMid:24833991 PMCid:PMC4013976CrossrefGoogle Scholar

  • 8. Ardo, B., Abubakar, D.M. (2016). Seroprevalence of horse (Equus caballus) brucellosis on the Mambilla plateau of Taraba State, Nigeria. J Equine Sci. 27(1): 1-6. https://doi.org/10.1294/jes.27.1 PMid:27073329 PMCid:PMC4828245Google Scholar

  • 9. Sule, WF, Oluwayelu, D.O., Adedokun, R.A.M., Rufai, N., McCracken, F., Mansfield, K.L., Johnson, N. (2015). High seroprevelance of West Nile Virus antibodies observed in horses from Southwestern Nigeria. Vec Borne Zoonot Dis. 15(3): 218-220. https://doi.org/10.1089/vbz.2014.1706 PMid:25793479 PMCid:PMC4369928CrossrefGoogle Scholar

  • 10. Agina, O.A., Ihedioha, J.I., Anyanwu, M.U., Ngwu, M.I. (2016). Clinicopathological and microbiological findings associated with wounds in Nigerian horses. Comp Clin Pathol. 26 (1): 181-188.Google Scholar

  • 11. Agina, O.A., Ihedioha, J.I. (2017). Occurrence of wounds in Nigerian horses. J Appl Anim Welf. Sci. https://doi.org/10.1080/10888705.2017.1343149 PMid:28696771CrossrefGoogle Scholar

  • 12. Alonso, C.A., Zarazaga, M., Ben Sallem, R., Jouini, A., Ben Slama, K., Torres, C. (2017). Antibiotic resistance in Escherichia coli in animal husbandry: the African perspective. Lett Appl Microbiol. 64, 318-334. https://doi.org/10.1111/lam.12724 PMid:28208218CrossrefGoogle Scholar

  • 13. Ugwu, I.C., Anyanwu, M.U., Ugwu, C.C., Ugwuanyi, O.W. (2015). Prevalence and antibiogram of generic extended-spectrum β-lactam-resistant enterobacteria in healthy pigs. Not Sci Biol. 7(3): 273-280. https://doi.org/10.15835/nsb.7.3.9616Google Scholar

  • 14. Huijbers, P.M., de Kraker, M., Graat, E.A., van Hoek, A.H., van Santen, M.G., de Jong, M.C., van Duijkeren, E., de Greeff, S.C. (2013). Prevalence of extended-spectrum β-lactamaseproducing Enterobacteriaceae in humans living in municipalities with high and low broiler density. Clin Microbiol Infect. 19(6): E256-59. https://doi.org/10.1111/1469-0691.12150 PMid:23397953CrossrefGoogle Scholar

  • 15. Maddox, T.W., Clegg, P.D., Williams, N.J., Pinchbeck, G.L. (2015). Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet J. 47(6): 756-765. https://doi.org/10.1111/evj.12471 PMid:26084443CrossrefGoogle Scholar

  • 16. Woerther, P., Burdet, C., Chachaty, E., Andremont, A. (2013). Trends in human fecal carriage of extendedspectrum- β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 26(4): 744-758. https://doi.org/10.1128/CMR.00023-13 PMid:24092853 PMCid:PMC3811232CrossrefGoogle Scholar

  • 17. Dolejska, M., Duskova, E., Rybarikova, J., Janoszowska, D., Roubalova, E., Dibdakova, K., Maceckova, G., Kohoutova, L., Literak, I., Smola, J., Cizek, A. (2011). Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 66(4): 757-764. https://doi.org/10.1093/jac/dkq500 PMid:21393204CrossrefGoogle Scholar

  • 18. Ewers, C., Stamm, I., Pfeifer, Y., Wieler, L.H., Kopp, P.A., et al. (2014). Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J Antimicrob Chemother 69(10): 2676-2680. https://doi.org/10.1093/jac/dku217 PMid:24974381Google Scholar

  • 19. Faleke, O.O., Jolayemi, K.O., Igoh, Y.O., Jibril, A.H., Ayedun, J.O. (2017). Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria. Mac Vet Rev. 40(1): 59-65. https://doi.org/10.1515/macvetrev-2017-0011CrossrefGoogle Scholar

  • 20. Johns, I.C., Adams, E.L. (2015). Trends in antimicrobial resistance in equine bacterial isolates: 1999-2012. Vet Rec. https://doi.org/10.1136/vr.102708 PMid:25628448CrossrefGoogle Scholar

  • 21. World Health Organization (WHO) (2014). Antimicrobial resistance: global report on surveillance. World Health OrganizationGoogle Scholar

  • 22. Schmiedel, J., Falgenhauer, L., Domann, E., Bauerfeind, R., Prenger-Berninghoff, E., et al. (2014). Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 14, 187. https://doi.org/10.1186/1471-2180-14-187 PMid:25014994 PMCid:PMC4105247CrossrefGoogle Scholar

  • 23. Vo, A.T., van Duijkeren, E., Fluit, A.C., Gaastra, W. (2007). Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses. Veterinary Microbiol. 124(3-4): 248-255. https://doi.org/10.1016/j.vetmic.2007.04.027 PMid:17521833CrossrefGoogle Scholar

  • 24. Smet, A., Boyen, F., Flahou, B., Doublet, B., Praud, K., Martens, A., Butaye, P., Cloeckaert, A., Haesebrouck, F. (2012). Emergence of CTX-M- 2-producing Escherichia coli in diseased horses: evidence of genetic exchanges of bla (CTX-M-2) linked to ISCR1. J Antimicrob Chemother. 67(5): 1289-1291. https://doi.org/10.1093/jac/dks016 PMid:22328640CrossrefGoogle Scholar

  • 25. Ewers, C., Bethe, A., Stamm, I., Grobbel, M., Kopp, PA, et al. (2014). CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother. 69(5): 1224-1230. https://doi.org/10.1093/jac/dkt516 PMid:24398338CrossrefGoogle Scholar

  • 26. van Spijk, J.N, Schmitt, S., Fürst, A.E., Schoster, A. (2016). A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015). Schweiz Arch Tierheilkd. 158(6): 433-442. https://doi.org/10.17236/sat00069 PMid:27504838Google Scholar

  • 27. Maddox, T.W., Clegg, P.D., Diggle, P.J., Wedley, A.L., Dawson, S., Pinchbeck, G.L., Williams, N.J. (2012). Cross-sectional study of antimicrobialresistant bacteria in horses. Part 1: Prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet J. 44(3): 289-296. https://doi.org/10.1111/j.2042-3306.2011.00441.x PMid:21848534CrossrefGoogle Scholar

  • 28. Maddox, T.W., Pinchbeck, G.L., Clegg, P.D., Wedley, A.L., Dawson, S., Williams, N.J. (2012). Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 2: Risk factors for faecal carriage of antimicrobial-resistant Escherichia coli in horses. Equine Vet J. 44(3): 297-303. https://doi.org/10.1111/j.2042-3306.2011.00440.x PMid:21848536CrossrefGoogle Scholar

  • 29. Chah, K.F., Oboegbulem, S.I. (2007). Extended spectrum beta-lactamase production among ampicillin-resistant Escherichia coli strains from chicken in Enugu State, Nigeria. Braz J Microbiol. 38, 681-686. https://doi.org/10.1590/S1517-83822007000400018CrossrefGoogle Scholar

  • 30. Duru, C., Nwanegbo, E., Adikwu, M., Ejikeugwu, C., Esimone, C. (2013). Extended-spectrum betalactamase- producing Escherichia coli strains of poultry origin in Owerri, Nigeria. World J Med Sci. 8(4): 349-354.Google Scholar

  • 31. Eze, E., Nwakeze, E., Oji, A., Ejikeugwu, C., Iroha, I. (2013). Microbiological investigation of Escherichia coli isolates from cloacal and feacal swabs of broiler chickens for extended- spectrum beta-lactamase (ESBL) enzymes. J Pharm Biol Sci. 7(5): 96-99.Google Scholar

  • 32. Ojo, O.E., Schwarz, S., Michael, G.B. (2016). Detection and characterization of extendedspectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol. 194, 62-68. https://doi.org/10.1016/j.vetmic.2016.04.022 PMid:27157499CrossrefGoogle Scholar

  • 33. Abubakar, M.B., Salihu, M.D., Aliyu, R.M., Bello, A., Tukur, H., Shuaibu, A.B. (2016). Occurrence and antimicrobial resistance of ESBL-producing Escherichia coli in indigenous chickens and retailed table-eggs in Sokoto metropolis, Nigeria. Schol J Biol Sci. 5(2): 56-60Google Scholar

  • 34. Olowe, O.A., Adewumi, O., Odewale, G., Ojurongbe, O., Adefioye, O.J. (2015). Phenotypic and molecular characterization of extended-spectrum betalactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. J Env Publ HealthGoogle Scholar

  • 35. Ogefere, H.O., Agbe, S.O., Ibadin, E.E. (2017). Detection of extended-spectrum beta-lactamases among Gramnegative bacilli recovered from cattle faeces in Benin city, Nigeria. Not Sci Biol. 9(2):177-181. https://doi.org/10.15835/nsb9210005Google Scholar

  • 36. Anyanwu, M.U., Ugwu, I.C., Ezekwelu, M.O., Okoroafor, U.N. (2017). Prevalence and antibiogram of generic extended β-lactam-resistant enterobacteria in healthy dogs. Not Sci Biol. 9(1): 22-33. https://doi.org/10.15835/nsb919940Google Scholar

  • 37. Cheesebrough, M. (2000). District laboratory practice in tropical countries Part 2. Cambridge University Press; Cambridge, pp. 63-70.Google Scholar

  • 38. Clinical and Laboratory Standards Institute (CLSI) (2014). Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement, M100-S24 34(1): 61-188.Google Scholar

  • 39. Clinical and Laboratory Standards Institute (CLSI) (2017). Performance standards for antimicrobial susceptibility testing, 27th Edition M100.Google Scholar

  • 40. Walther, B., Lübke-Becker, A., Stamm, I., Gehlen, H., Barton, A.K., Janssen, T., Wieler, L.H., Guenther, S. (2014). Suspected nosocomial infections with multidrug resistant E. coli, including extended-spectrum beta-lactamase (ESBL)-producing strains, in an equine clinic. Berl Munch Tierarztl Wochenschr. 127(11-12): 421-427. PMid:25872251Google Scholar

  • 41. Hagget, E.F. (2014). Antimicrobial use in foal: do we need to change how we think? Equine Vet J. 46, 137-138. https://doi.org/10.1111/evj.12178 PMid:24548374CrossrefGoogle Scholar

  • 42. Ahmed, M.O., Clegg, P.D., Williams, N.J., Baptiste, K.E., Bennett, M. (2010). Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob. 9, 12. https://doi.org/10.1186/1476-0711-9-12 PMid:20374640 PMCid:PMC2867969CrossrefGoogle Scholar

  • 43. Schaufler, K., Bethe, A., Lubke-Becker, A., Ewers, C., Kohn, B., Wieler, L.H., Guenther, S. (2015). Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol. 5, 25334. https://doi.org/10.3402/iee.v5.25334 PMid:25656467 PMCid:PMC4318939CrossrefGoogle Scholar

  • 44. Damborg, P., Marskar, P., Baptiste, K.E., Guardabassi, L. (2012). Faecal shedding of CTXM- producing Escherichia coli in horses receiving broad-spectrum antimicrobial prophylaxis after hospital admission. Vet Microbiol. 154(3-4): 298-304. https://doi.org/10.1016/j.vetmic.2011.07.005 PMid:21820821CrossrefGoogle Scholar

  • 45. Beceiro, A., Maharjan, S., Gaulton, T., Doumith, M., Soares, N.C., Dhanji, H., et al. (2011). False extended-spectrum {beta}-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrob Chemother. 66, 2006-2010. https://doi.org/10.1093/jac/dkr265 PMid:21742679CrossrefGoogle Scholar

About the article

Received: 2017-10-30

Revised: 2018-04-04

Accepted: 2018-04-30

Published Online: 2018-06-26

Published in Print: 2018-06-01


Citation Information: Macedonian Veterinary Review, ISSN (Online) 1857-7415, DOI: https://doi.org/10.2478/macvetrev-2018-0015.

Export Citation

© 2018 Madubuike Umunna Anyanwu, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in