Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2016: 0.805
5-year IMPACT FACTOR: 1.000

CiteScore 2016: 0.89

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.711

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 70, Issue 1-2 (Feb 2006)

Issues

Geographic variation in body size of American mink ( Mustela vison ) / Variation géographique de la taille du corps chez le vison d'Amérique ( Mustela vison )

Richard T. Stevens
  • Department of Biology, The University of Memphis, Memphis, TN 38152-6080, USA and Department of Biology, Monroe Community College, Damon City Campus, 228 E. Main St., Rochester, NY 14604, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael L. Kennedy

Abstract

Spatial variation in 26 morphological characters of American mink ( Mustela vison ) from 35 localities in North America was investigated using univariate and multivariate statistical analyses. Localities were chosen based on watersheds, and it was hypothesized that high levels of gene flow in minks would prevent partitioning of body size variation within watersheds. All 26 characters in males and 25 of 26 in females exhibited significant interlocality variation. The patterns of variation in body size resulting from principal components analysis indicated that, for both sexes, minks were largest in Alaska, Manitoba, and Alberta; smallest minks were found in Florida and Quebec. There did not appear to be a relationship between body size and geographic proximity. Environmental factors collectively were found to be related to body size, although individual variables were not typically significant. Of 16 environmental variables examined, only longitude was correlated with body size in both sexes, with largest minks in the west and smallest in the east. Latitude was also correlated with body size in females. It was concluded that variation in body size of mink was likely the result of more than one factor that includes both biotic and abiotic features.

Résumé

La variation spatiale de 26 caractères morphologiques du vison ( Mustela vison ) a étéétudiée dans 35 localités d'Amérique du Nord en utilisant des analyses statistiques multivariées et univariées. Les localités ont été choisies sur la base des lignes de partage, et on a présumé que les flux élevés d'écoulement de gène chez le vison empêcheraient la division de la variation de taille du corps dans des lignes de partage. Tous les 26 caractères chez les mâles et 25 des 26 chez les femelles ont montré une variation significative en fonction de la localité. Les modèles de la variation de la taille de corps après analyse en composante principale indiquent que pour les deux sexes, le vison est le plus grand en Alaska, Manitoba et Alberta; le plus petit vison a été trouvé en Floride et au Québec. Il n'a pas semblé avoir de rapport entre la taille du corps et la proximité géographique. Des facteurs environnementaux pris collectivement se sont avérés être liés à la taille du corps, bien que les différentes variables n'étaient pas en général significatives. Des 16 variables environnementales examinées, seule la longitude a été corrélée à la taille de corps dans les deux sexes, avec le plus grand vison à l'ouest et le plus petit à l'est. La latitude a été corrélée à la taille du corps chez les femelles. On a conclu que la variation de la taille de corps du vison était probablement le résultat de plus d'un facteur incluant les paramètres biotiques et abiotiques.

Keywords: American mink; body size; geographic variation; Mustela vison; mustelids; Mustela vison; mustélidés; taille du corps; variation géographique; Vison

References

  • Abell, R.A., D.M. Olson, E. Dinerstein, P.T. Hurley, et al. 2000. Freshwater ecoregions of North America: a conservation assessment. Island Press, Washington, DC. 319 pp.Google Scholar

  • Ashton, K.G., M.C. Tracy and A. de Queiroz. 2000. Is Bergmann's rule valid for mammals? Am. Nat.156: 390–415.Google Scholar

  • Baker, A.J., R.L. Peterson, J.L. Eger and T.H. Manning. 1978. Statistical analysis of geographic variation in the skull of the arctic hare ( Lepus arcticus ). Can. J. Zool.56: 2067–2082.Google Scholar

  • Ben-David, M., M.R.T. Bowyer and J.B. Faro. 1995. Niche separation by mink and river otters: coexistence in a marine environment. Oikos75: 41–48.Google Scholar

  • Boyce, M.S. 1978. Climatic variability and body size variation in the muskrats ( Ondatra zibethicus ) of North America. Oecologia36: 1–19.CrossrefGoogle Scholar

  • Brown, J.H. and R.C. Laziewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology53: 939–943.CrossrefGoogle Scholar

  • Clutton-Brock, T.H. and P.H. Harvey. 1983. The functional significance of variation in body size in mammals. In: (J.F. Eisenberg and D.V. Kleiman, eds.) Advances in the study of mammalian behavior. American Society of Mammalogists. pp. 632–663.Google Scholar

  • Dayan, T. and D. Simberloff. 1996. Patterns of size separation in carnivore communities. In: (J. Gittleman, ed.) Carnivore behavior, ecology, and evolution, Vol. 2. Comstock Publishing. Ithaca, NY. pp. 243–266.Google Scholar

  • Dobson, F.S. and J.D. Wigginton. 1996. Environmental influences on the sexual dimorphism in body size of western bobcats. Oecologia108: 610–616.CrossrefGoogle Scholar

  • Dunstone, N. and J.D.S. Birks. 1985. The comparative ecology of coastal, riverine, and lacustrine mink ( Mustela vison ) in Britain. Z. Angew. Zool.72: 52–70.Google Scholar

  • Eger, J.L. 1990. Patterns of geographic variation in the skull of Nearctic ermine ( Mustela erminea ). Can. J. Zool.68: 1241–1249.Google Scholar

  • Eisenberg, J.F. 1981. The mammalian radiations. University of Chicago Press, Chicago. 610 pp.Google Scholar

  • Elrod, D.A. and M.L. Kennedy. 1995. Microgeographic variation in morphometric characters of the white-footed mouse, Peromyscus leucopus . Southwest. Nat.40: 42–49.Google Scholar

  • Environment Canada. 1999. http://ec.gc.ca/climate/normals/eprovndx.htm.Google Scholar

  • Erlinge, S. 1987. Why do European stoats Mustela erminea not follow Bergmann's rule? Holarctic Ecol.10: 33–39.Google Scholar

  • Gilbert, F.F. and E.G. Nancekivell. 1982. Food habits of mink ( Mustela vison ) and otter ( Lutra canadensis ) in northeastern Alberta. Can. J. Zool.60: 1282–1288.Google Scholar

  • Gould, S.J. and R.F. Johnston. 1972. Geographic variation. Annu. Rev. Ecol. Syst.3: 457–498.Google Scholar

  • Hayward, G.F. 1983. The bioenergetics of the weasel, Mustela nivalis . Ph.D. dissertation. Oxford University, Oxford. 214 pp.Google Scholar

  • Holmes, T. and R.A. Powell. 1994. Morphology, ecology, and the evolution of sexual dimorphism in North American Martes. In: (S.W. Buskirk, A.S. Harestad, M.G. Raphael and R.A. Powell, eds.) Martens, Sables, and Fishers: Biology and Conservation. Cornell University Press, Ithaca, NY. pp. 72–84.Google Scholar

  • Humphrey, S.R. and H.W. Setzer. 1989. Geographic variation and taxonomic revision of mink ( Mustela vison ) in Florida. J. Mammal.70: 241–252.Google Scholar

  • Johnson, D.R. 1991. Measurement of weasel body size. Can. J. Zool.69: 2277–2279.Google Scholar

  • James, R.C. 1970. Geographic size variation in birds and its relationship to climate. Ecology51: 365–390.CrossrefGoogle Scholar

  • Korschgen, L.G. 1958. December food habits of mink in Missouri. J. Mammal.39: 521–527.Google Scholar

  • Lariviere, S. 1999. Mustela vison . Mamm. Species608: 1–9.Google Scholar

  • Lindsay, S.L. 1986. Geographic size variation in Tamiasciurus douglasii : significance in relation to conifer cone morphology. J. Mammal.67: 317–325.Google Scholar

  • Linscombe, G., N. Kinler and R.J. Aulerich. 1982. Mink. In: (J.A. Chapman and G. Feldhamer, eds.) Wild mammals of North America: biology, management and economics. The Johns Hopkins University Press, Baltimore, MD. pp. 629–643.Google Scholar

  • Lizotte, R.E. Jr. 1994. Biology of the river otter ( Lutra canadensis ): I. Demography and food habits of the river otter in western Tennessee; II. Size variation in the river otter and its relationship to selected environmental variables. M.S. thesis. Memphis State University, Memphis, TN. 150 pp.Google Scholar

  • Lynch, J.M. and T.J. Hayden. 1995. Genetic influences on cranial form: variation among ranch and feral mink Mustela vison (Mammalia: Mustelidae). Biol. J. Linn. Soc.55: 293–307.Google Scholar

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res.27: 209–220.PubMedGoogle Scholar

  • Marroig, G. and J. Cheverud. 2004. Did natural selection of genetic drift produce the cranial diversification of Neotropical monkeys? Am. Nat. 163: 417–428.Google Scholar

  • Mayr, E. 1970. Populations, species, and evolution. Harvard University Press, Boston. 797 pp.Google Scholar

  • McNab, B.K. 1971. On the ecological significance of Bergmann's rule. Ecology52: 845–852.CrossrefGoogle Scholar

  • Melquist, W.E., J.S. Whitman and M.G. Hornocker. 1981. Resource partitioning and co-existence of sympatric mink and river otter populations. In: (J.A. Chapman and D. Pursley, eds.) Proceedings of the 1980 Worldwide Furbearer Conference, Frostburg, MD. R.R. Donnelley and Sons, Falls Church, VA. pp. 187–221.Google Scholar

  • Moncrief, N.D. 1987. Geographic variation in morphology and allozymes within tree squirrels, Sciurus niger and S. carolinensis , of the lower Mississippi River Valley. Ph.D. dissertation. Louisiana State University, Baton Rouge. 374 pp.Google Scholar

  • Moors, P.J. 1980. Sexual dimorphism in body size of mustelids (Carnivora): the roles of food habits and breeding systems. Oikos34: 147–158.CrossrefGoogle Scholar

  • Nagorsen, D.W. 1985. A morphometric study of geographic variation in the snowshoe hare ( Lepus americanus ). Can. J. Zool.63: 567–579.Google Scholar

  • Olcott, S.P. and R.E. Barry. 2000. Environmental correlates of geographic variation in body size of the eastern cottontail ( Sylvilagus floridanus ). J. Mammal.81: 986–998.Google Scholar

  • Patton, J.L. and M.N.F. da Silva. 1998. Rivers, refuges, and ridges: the geography of speciation of Amazonian mammals. In: (D.J. Hayward and S.T. Berlocher, eds.) Endless forms: species and speciation. Oxford University Press, New York. pp. 202–213.Google Scholar

  • Peres, C.A., J.L. Patton and M.N.F. da Silva. 1996. Riverine barriers and gene flow in Amazonian saddle-back tamarin monkeys. Fol. Primatol.67: 113–124.Google Scholar

  • Powell, R.A. 1979. Ecological energetics and foraging strategies of the fisher ( Martes pennanti ). J. Anim. Ecol.48: 195–212.Google Scholar

  • Powell, R.A. and C.M. King. 1997. Variation in body size, sexual dimorphism, and age-specific survival in stoats, Mustela erminea (Mammalia: Carnivora), with fluctuating food supplies. Biol. J. Linn. Soc.62: 165–194.Google Scholar

  • Ralls, K. 1977. Sexual dimorphism in mammals: avian models and unanswered questions. Am. Nat.111: 917–938.Google Scholar

  • Reig, S. 1992. Geographic variation in pine marten ( Martes martes ) and beech marten ( Martes foina ) in Europe. J. Mammal.73: 744–769.Google Scholar

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution43: 223–225.CrossrefGoogle Scholar

  • Ritke, M.E. and M.L. Kennedy. 1988. Intraspecific morphologic variation in the raccoon Procyon lotor and its relationship to selected environmental variables. Southwest. Nat.33: 295–314.Google Scholar

  • Rohlf, F.J. 1987. NTSYS-pc. Numerical taxonomy and multivariate analysis system for the IBM PC microcomputer (and compatibles). Allied Biostatistics Inc. 288 pp.Google Scholar

  • Rosenzweig, M.L. 1966. Community structure in sympatric Carnivora. J. Mammal.47: 602–612.Google Scholar

  • Rosenzweig, M.L. 1968. The strategy of body size in mammalian carnivores. Am. Midland Nat.80: 299–315.Google Scholar

  • SAS Institute. 1985. SAS user's guide: statistics. SAS Institute, Cary, NC. 231 pp.Google Scholar

  • Selander, J.A. 1943. Winter food habits of mink in southern Michigan. J. Wildl. Manage.7: 411–417.Google Scholar

  • Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman, San Francisco. 573 pp.Google Scholar

  • Stevens, R.T. 2002. Spatial ecology of the mink ( Mustela vison ). Ph.D. dissertation. University of Memphis, Memphis, TN. 125 pp.Google Scholar

  • Straney, D.O. and J.L. Patton. 1980. Phylogenetic and environmental determinants of geographic variation of the pocket mouse Perognatus goldmani Osgood. Evolution34: 888–903.CrossrefGoogle Scholar

  • Thornthwaite Associates. 1964. Average climatic water balance data of the continents. Lab. Climatol. Publ. Climatol. 17: 231–615.Google Scholar

  • US Department of Commerce. 1973. Climatography of the United States (by state). Monthly normals of temperature, precipitation, and heating and cooling degree days 1941–1971. 452 pp.Google Scholar

  • US Department of Commerce. 1982. Comparative climatic date for the United States through 1981. 247 pp.Google Scholar

  • Van Zyll de Jong, C.G. 1972. A systematic review of the Nearctic and Neotropical river otters (genus Lutra , Mustelidae, Carnivora). The Royal Ontario Museum, Toronto, Canada. 104 pp.Google Scholar

  • Wiig, O. and R.W. Lie. 1979. Metrical and non-metrical skull variation in Norwegian wild mink ( Mustela vison Schreber). Zool. Scr.8: 297–300.Google Scholar

  • Whitman, J.S. 1981. Ecology of the mink ( Mustela vison ) in west-central Idaho. M.Sc. thesis. University of Idaho, Moscow. 89 pp.Google Scholar

About the article

Corresponding author


Published in Print: 2006-02-01


Citation Information: Mammalia, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/MAMM.2006.018.

Export Citation

© 2007 by De Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
ANDRZEJ ZALEWSKI and MAGDALENA BARTOSZEWICZ
Biological Journal of the Linnean Society, 2012, Volume 105, Number 3, Page 681

Comments (0)

Please log in or register to comment.
Log in