Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 78, Issue 2

Issues

Landscape genetics in mammals

Claudine Montgelard
  • Corresponding author
  • Laboratoire de Biogéographie et Écologie des Vertébrés (EPHE), Centre d’Écologie Fonctionnelle et Évolutive (CNRS UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
  • Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saliha Zenboudji
  • Laboratoire de Biogéographie et Écologie des Vertébrés (EPHE), Centre d’Écologie Fonctionnelle et Évolutive (CNRS UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anne-Laure Ferchaud
  • Laboratoire de Biogéographie et Écologie des Vertébrés (EPHE), Centre d’Écologie Fonctionnelle et Évolutive (CNRS UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Véronique Arnal
  • Laboratoire de Biogéographie et Écologie des Vertébrés (EPHE), Centre d’Écologie Fonctionnelle et Évolutive (CNRS UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bettine Jansen van Vuuren
  • Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-07 | DOI: https://doi.org/10.1515/mammalia-2012-0142

Abstract

The focus of this review is on landscape genetics (LG), a relatively new discipline that arose approximately 10 years ago. LG spans the interface between population genetics and landscape ecology and thus incorporates the concepts, methods, and tools from both disciplines. On the basis of an understanding of the spatial distribution of genetic diversity, LG aims to explain how landscape and environmental characteristics influence microevolutionary processes and metapopulation dynamics, including gene flow (i.e., connectivity) and selection (i.e., local adaptations). LG is concerned with events that occurred during the recent time scale, and the individual is the operational unit. As a discipline that combines spatial genetic diversity with ecological features, LG is able to address questions relating to different evolutionary processes. We illustrate some of these here using examples taken from mammals: population structure; gene flow and the identification of barriers; fragmentation, connectivity, and corridors; local adaptation and selection; there are two different questions: applications in conservation genetics; and future developments in LG. We will then present the methods and tools commonly used in the different steps of LG analyses: the genetic and landscape sampling, the quantification of genetic variation, the characterization of spatial landscape structures, and finally, the correlation between genetic patterns and landscape features.

Keywords: genetic pattern; landscape features; sampling; scale; spatial structure

References

  • Aars, J., J.F. Dallas, S.B. Piertney, F. Marshall, J.L. Gow, S. Telfer and X. Lambin. 2006. Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchy habitats. Mol. Ecol. 15: 1455–1466.PubMedCrossrefGoogle Scholar

  • Adriaensen, F., J.P. Chardon, G. De Blust, E. Swinnen, S. Villalba, H. Gulinck and E. Matthysen. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landscape Urban Plan. 64: 233–247.CrossrefGoogle Scholar

  • Alexander, D.H., J. Novembre and K. Lange. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19: 1655–1664.PubMedCrossrefGoogle Scholar

  • Allendorf, F.W. and J.J. Hard. 2009. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl. Acad. Sci. USA 106: 9987–9994.CrossrefGoogle Scholar

  • Allendorf, F.W., P.A. Hohenlohe and G. Luikart. 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11: 697–709.CrossrefPubMedGoogle Scholar

  • Anderson, C.S. and D.B. Meikle. 2010. Genetic estimates of immigration and emigration rates in relation to population density and forest patch area in Peromyscus leucopus. Conserv. Genet. 11: 1593–1605.CrossrefGoogle Scholar

  • Anderson, C.D., B.K. Epperson, M.J. Fortin, R. Holderegger, P.M.A. James, M.S. Rosenberg, K.T. Scribner and S. Spear. 2010. Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol. Ecol. 19: 3565–3575.PubMedCrossrefGoogle Scholar

  • Ansmann, I.C., G.J. Parra, J.M. Lanyon and J.M. Seddon. 2012. Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia. Mol. Ecol. 21: 4472–4485.CrossrefGoogle Scholar

  • Antolin, M.F., L.T. Savage and R.J. Eisen. 2006. Landscape features influence genetic structure of black-tailed prairie dogs (Cynomys ludovicianus). Landscape Ecol. 21: 867–875.CrossrefGoogle Scholar

  • Arrendal, J., C.W. Walker, A.K. Sundqvist, L. Hellborg and C. Vila. 2004. Genetic evaluation of an otter translocation program. Conserv. Genet. 5: 79–88.CrossrefGoogle Scholar

  • Avise, J.C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA. pp. 447.Google Scholar

  • Baguette, M. and H. Van Dyck. 2007. Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol. 22: 1117–1129.CrossrefGoogle Scholar

  • Balkenhol, N. and L.P. Waits. 2009. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18: 4151–4164.CrossrefPubMedGoogle Scholar

  • Balkenhol, N., F. Gugerli, S.A. Cushman, L.P. Waits, A. Coulon, J.W. Arntzen, R. Holderegger and H.H. Wagner. 2009a. Identifying future research needs in landscape genetics: where to from here? Landscape Ecol. 24: 455–463.CrossrefGoogle Scholar

  • Balkenhol, N., L.P. Waits and R.J. Dezzani. 2009b. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32: 818–830.CrossrefGoogle Scholar

  • Balkenhol, N., R. Pardini, C. Cornelius, F. Fernandes and S. Sommer. 2013. Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv. Genet. 14: 355–367.CrossrefGoogle Scholar

  • Beier, P. and A.J. Gregory. 2012. Desperately seeking stable 50-year-old landscapes with patches and long, wide corridors. PLoS Biol. 10: e1001253.CrossrefGoogle Scholar

  • Beier, P. and R.F. Noss. 1998. Do habitat corridors provide connectivity? Conserv. Biol. 12: 1241–1252.CrossrefGoogle Scholar

  • Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste and F. Bonhomme. 1996. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France.Google Scholar

  • Berry, O., M.D. Tocher and S.D. Sarre. 2004. Can assignment tests measure dispersal? Mol. Ecol. 13: 551–561.CrossrefPubMedGoogle Scholar

  • Biek, R. and L.A. Real. 2010. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19: 3515–3531.PubMedCrossrefGoogle Scholar

  • Blanchong, J.A., M.D. Samuel, K.T. Scribner, B.V. Weckworth, J.A. Langenberg and K.B. Filcek. 2008. Landscape genetics and the spatial distribution of chronic wasting disease. Biol. Lett. 4: 130–133.PubMedCrossrefGoogle Scholar

  • Bohonak, A.J. and A.G. Vandergast. 2011. The value of DNA sequence data for studying landscape genetics. Mol. Ecol. 20: 2477–2479.PubMedCrossrefGoogle Scholar

  • Bonin, A., F. Nicole, F. Pompanon, C. Miaud and P. Taberlet. 2007. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv. Biol. 21: 697–708.CrossrefPubMedGoogle Scholar

  • Bonnet, E. and Y. Van der Peer. 2002. ZT: a software tool for simple and partial Mantel tests. J. Stat. Softw. 7: 1–12.Google Scholar

  • Bowcock, A.M., A. Ruizlinares, J. Tomfohrde, E. Minch, J.R. Kidd and L.L. Cavalli-Sforza. 1994. High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.PubMedCrossrefGoogle Scholar

  • Broquet, T. and E.J. Petit. 2009. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40: 193–216.CrossrefGoogle Scholar

  • Brumfield, R.T., P. Beerli, D.A. Nickerson and S.V. Edwards. 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18: 249–256.CrossrefGoogle Scholar

  • Campbell, P., B. Pasch, J.L. Pino, O.L. Crino, M. Phillips and S.M. Phelps. 2010. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution 64: 1955–1972.PubMedGoogle Scholar

  • Cavallis-Sforza, L.l. and A.W.F. Edwards. 1967. Phylogenetic analysis models and estimation procedures. Am. J. Hum. Genet. 19: 233.Google Scholar

  • Ceballos, G. and P.R. Ehrlich. 2002. Mammal population losses and the extinction crisis. Science 296: 904–907.CrossrefPubMedGoogle Scholar

  • Clarke, K.R. and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92: 205–219.CrossrefGoogle Scholar

  • Compton, B.W., K. McGarigal, S.A. Cushman and L.R. Gamble. 2007. A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21: 788–799.PubMedCrossrefGoogle Scholar

  • Corander, J. and P. Marttinen. 2006. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15: 2833–2843.CrossrefPubMedGoogle Scholar

  • Coulon, A., J.F. Cosson, J.M. Angibault, B. Cargnelutti, M. Galan, N. Morellet, E. Petit, S. Aulagnier and A.J.M. Hewison. 2004. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol. Ecol. 13: 2841–2850.CrossrefGoogle Scholar

  • Coulon, A., G. Guillot, J.F. Cosson, J.M.A. Angibault, S. Aulagnier, B. Cargnelutti, M. Galan and A.J.M. Hewison. 2006. Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol. Ecol. 15: 1669–1679.PubMedCrossrefGoogle Scholar

  • Coulon, A., J.W. Fitzpatrick, J. Bowman and I.J. Lovette. 2012. Mind the gap: genetic distance increases with habitat gap size in Florida scrub jays. Biol. Lett. 8: 582–585.CrossrefPubMedGoogle Scholar

  • Crandall, K.A., O.R.P. Bininda-Emonds, G.M. Mace and R.K. Wayne. 2000. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15: 290–295.PubMedCrossrefGoogle Scholar

  • Cullingham, C.I., C.J. Kyle, B.A. Pond, E.E. Rees and B.N. White. 2009. Differential permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol. Ecol. 18: 43–53.PubMedGoogle Scholar

  • Cushman, S.A. and E.L. Landguth. 2010a. Scale dependent inference in landscape genetics. Landscape Ecol. 25: 967–979.CrossrefGoogle Scholar

  • Cushman, S.A. and E.L. Landguth. 2010b. Spurious correlations and inference in landscape genetics. Mol. Ecol. 19: 3592–3602.PubMedCrossrefGoogle Scholar

  • Cushman, S.A. and J.S. Lewis. 2010. Movement behavior explains genetic differentiation in American black bears. Landscape Ecol. 25: 1613–1625.CrossrefGoogle Scholar

  • Cushman, S.A., K.S. McKelvey, J. Hayden and M.K. Schwartz. 2006. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168: 486–499.CrossrefPubMedGoogle Scholar

  • Cushman, S.A., A.S. Shirk and E.L. Landguth. 2012. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol. 27: 369–380.CrossrefGoogle Scholar

  • Davey, J.W. and M.L. Blaxter. 2010. RADSeq: next-generation population genetics. Brief. Funct. Genomics 9: 416–423.PubMedCrossrefGoogle Scholar

  • Duchesne, P. and J. Turgeon. 2012. FLOCK provides reliable solutions to the “number of populations” problem. J. Hered. 103: 734–743.CrossrefGoogle Scholar

  • Dudaniec, R.Y., S.F. Spear, J.S. Richardson and A. Storfer. 2012. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS ONE 7: e36769.Google Scholar

  • Dungan, J.L., J.N. Perry, M.R.T. Dale, P. Legendre, S. Citron-Pousty, M.J. Fortin, A. Jakomulska, M. Miriti and M.S. Rosenberg. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25: 626–640.CrossrefGoogle Scholar

  • du Toit N., B. Jansen van Vuuren, S. Matthee and C.A. Matthee. 2012. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol. Phylogenet. Evol. 65: 75–86.Google Scholar

  • Edmands, S. 2007. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16: 463–475.PubMedGoogle Scholar

  • Ekblom, R. and J. Galindo. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107: 1–15.CrossrefPubMedGoogle Scholar

  • Elmhagen, B. and A. Angerbjorn. 2001. The applicability of metapopulation theory to large mammals. Oikos 94: 89–100.CrossrefGoogle Scholar

  • Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6: e19379.Google Scholar

  • Epps, C.W., J.D. Wehausen, V.C. Bleich, S.G. Torres and J.S. Brashares. 2007. Optimizing dispersal and corridor models using landscape genetics. J. Appl. Ecol. 44: 714–724.CrossrefGoogle Scholar

  • Estoup, A. and T. Guillemaud. 2010. Reconstructing routes of invasion using genetic data: why, how and so what? Mol. Ecol. 19: 4113–4130.CrossrefGoogle Scholar

  • Etherington, T.R. 2011. Python based GIS tools for landscape genetics: visualising genetic relatedness and measuring landscape connectivity. Methods Ecol. Evol. 2: 52–55.CrossrefGoogle Scholar

  • Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564–567.CrossrefGoogle Scholar

  • Fahrig, L. 1997. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manage. 61: 603–610.Google Scholar

  • Faubet, P. and O.E. Gaggiotti. 2008. A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178: 1491–1504.CrossrefPubMedGoogle Scholar

  • Finnegan, L.A., P.J. Wilson, G.N. Price, S.J. Lowe, B.R. Patterson, M.J. Fortin and D.L. Murray. 2012. The complimentary role of genetic and ecological data in understanding population structure: a case study using moose (Alces alces). Eur. J. Wildl. Res. 58: 415–423.Google Scholar

  • Foll, M. and O. Gaggiotti. 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174: 875–891.PubMedCrossrefGoogle Scholar

  • Francois, O., S. Ancelet and G. Guillot. 2006. Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174: 805–816.PubMedCrossrefGoogle Scholar

  • Frankham, R., J.D. Ballou and D.A. Briscoe. 2009. Introduction to conservation genetics. Cambridge University Press, Cambridge, UK. pp. 618.Google Scholar

  • Frantz, A.C., L.C. Pope, T.R. Etherington, G.J. Wilson and T. Burke. 2010. Using isolation-by-distance-based approaches to assess the barrier effect of linear landscape elements on badger (Meles meles) dispersal. Mol. Ecol. 19: 1663–1674.CrossrefPubMedGoogle Scholar

  • Frantz, A.C., S. Bertouille, M.C. Eloy, A. Licoppe, F. Chaumont and M.C. Flamand. 2012. Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol. Ecol. 21: 3445–3457.CrossrefGoogle Scholar

  • Frichot, E., S.D. Schoville, G. Bouchard and O. Francois. 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30: 1687–1699.PubMedCrossrefGoogle Scholar

  • Galpern, P., M. Manseau and P. Wilson. 2012. Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Mol. Ecol. 21: 3996–4009.PubMedCrossrefGoogle Scholar

  • Gauffre, B., A. Estoup, V. Bretagnolle and J.F. Cosson. 2008. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol. Ecol. 17: 4619–4629.CrossrefGoogle Scholar

  • Gilbert-Norton, L., R. Wilson, J.R. Stevens and K.H. Beard. 2010. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24: 660–668.CrossrefGoogle Scholar

  • Goslee, S.C. and D.L. Urban. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22: 1–19.Google Scholar

  • Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485–486.Google Scholar

  • Guillot, G. and F. Rousset. 2013. Dismantling the Mantel tests. Method. Ecol. Evol. 4: 336–344.CrossrefGoogle Scholar

  • Guillot, G., F. Mortier and A. Estoup. 2005. GENELAND: a computer package for landscape genetics. Mol. Ecol. Notes 5: 712–715.CrossrefGoogle Scholar

  • Guillot, G., R. Leblois, A. Coulon and A. Frantz. 2009. Statistical methods in spatial genetics. Mol. Ecol. 18: 4734–4756.CrossrefPubMedGoogle Scholar

  • Haddad, N.M., D.R. Bowne, A. Cunningham, B.J. Danielson, D.J. Levey, S. Sargent and T. Spira. 2003. Corridor use by diverse taxa. Ecology 84: 609–615.CrossrefGoogle Scholar

  • Hancock, A.M., D.B. Witonsky, E. Ehler, G. Alkorta-Aranburu, C.M. Beall, A. Gebremedhin, R. Sukernik, G. Utermann, J.K. Pritchard, G. Coop and A. Di Rienzo. 2010. Human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc. Natl. Acad. Sci. USA 107: 8924–8930.CrossrefGoogle Scholar

  • Hancock, A.M., D.B. Witonsky, G. Alkorta-Aranburu, C.M. Beall, A. Gebremedhin, R. Sukernik, G. Utermann, J.K. Pritchard, G. Coop and A. Di Rienzo. 2011. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 7: e1001375.CrossrefGoogle Scholar

  • Hansen, M.M., K. Meier and K.L.D. Mensberg. 2010. Identifying footprints of selection in stocked brown trout populations: a spatio-temporal approach. Mol. Ecol. 19: 1787–1800.CrossrefPubMedGoogle Scholar

  • Hansen, M.M., I. Olivieri, D.M. Waller and E.E. Nielsen. 2012. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21: 1311–1329.PubMedCrossrefGoogle Scholar

  • Hanski, I. and O.E. Gaggiotti. 2004. Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, San Diego, CA. pp. 696.Google Scholar

  • Hanski, I. and O. Ovaskainen. 2000. The metapopulation capacity of a fragmented landscape. Nature 404: 755–758.PubMedCrossrefGoogle Scholar

  • Hardouin E.A., J.L. Chapuis, M.I. Stevens, B. Jansen van Vuuren, P. Quillfeldt, R.J. Scavetta, M. Teschke and D. Tautz. 2010. House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evol. Biol. 10: 325.Google Scholar

  • Hardy, O.J. and X. Vekemans. 2002. SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2: 618–620.CrossrefGoogle Scholar

  • Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.PubMedCrossrefGoogle Scholar

  • Hey, J. and R. Nielsen. 2004. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167: 747–760.CrossrefGoogle Scholar

  • Hey, J. and R. Nielsen. 2007. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. USA 104: 2785–2790.CrossrefGoogle Scholar

  • Hoekstra, H.E., K.E. Drumm and M.W. Nachman. 2004. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58: 1329–1341.PubMedCrossrefGoogle Scholar

  • Höglund, J. 2009. Evolutionary conservation genetics. Oxford University Press, New York. pp. 189.Google Scholar

  • Holderegger, R. and M. Di Giulio. 2010. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11: 522–531.CrossrefGoogle Scholar

  • Holderegger, R. and H.H. Wagner. 2006. A brief guide to landscape genetics. Landscape Ecol. 21: 793–796.CrossrefGoogle Scholar

  • Holderegger, R. and H.H. Wagner. 2008. Landscape genetics. Bioscience 58: 199–207.CrossrefGoogle Scholar

  • Holderegger, R., U. Kamm and F. Gugerli. 2006. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol. 21: 797–807.CrossrefGoogle Scholar

  • Holzhauer, S.I.J., K. Ekschmitt, A.C. Sander, J. Dauber and V. Wolters. 2006. Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol. 21: 891–899.CrossrefGoogle Scholar

  • Huelsenbeck, J.P., P. Andolfatto and E.T. Huelsenbeck. 2011. Structurama: Bayesian inference of population structure. Evol. Bioinform. 7: 55–59.CrossrefGoogle Scholar

  • Igawa, T., S. Oumi, S. Katsuren and M. Sumida. 2013. Population structure and landscape genetics of two endangered frog species of genus Odorrana: different scenarios on two islands. Heredity 110: 46–56.CrossrefPubMedGoogle Scholar

  • Ingvarsson, P.K. 2001. Restoration of genetic variation lost – the genetic rescue hypothesis. Trends Ecol. Evol. 16: 62–63.CrossrefPubMedGoogle Scholar

  • International Union for the Conservation of Nature. 2012. IUCN Red List of Threatened Species. Version 2010.1. Retrieved: 7 November 2012, from www.iucnredlist.org.

  • Jaquiery, J., T. Broquet, A.H. Hirzel, J. Yearsley and N. Perrin. 2011. Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol. Ecol. 20: 692–705.PubMedCrossrefGoogle Scholar

  • Jensen, J.L., A.J. Bohonak and S.T. Kelley 2005. Isolation by distance, web service. BMC Genet. 6: 13.PubMedCrossrefGoogle Scholar

  • Jombart, T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405.CrossrefGoogle Scholar

  • Jombart, T., S Devillard, A.B. Dufour and D. Pontier. 2008. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101: 92–103.PubMedCrossrefGoogle Scholar

  • Jombart, T., D Pontier and A.B. Dufour. 2009. Genetic markers in the playground of multivariate analysis. Heredity 102: 330–341.CrossrefPubMedGoogle Scholar

  • Jombart, T., S. Devillard and F. Balloux. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11: 94.CrossrefPubMedGoogle Scholar

  • Joost, S., A. Bonin, M.W. Bruford, L. Despres, C. Conord, G. Erhardt and P. Taberlet. 2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol. 16: 3955–3969.CrossrefPubMedGoogle Scholar

  • Karsten, M., B. Jansen van Vuuren, P. Goodman and A. Barnaud. 2011. The history and management of black rhino in KwaZulu-Natal: a population genetic approach to assess the past and guide the future. Anim. Conserv. 14: 363–370.CrossrefGoogle Scholar

  • Kawecki, T.J. and D. Ebert. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7: 1225–1241.CrossrefGoogle Scholar

  • Knowles, L.L. and D.F. Alvarado-Serrano. 2010. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Mol. Ecol. 19: 3727–3745.PubMedCrossrefGoogle Scholar

  • Konecny, A., A. Estoup, J.M. Duplantier, J. Bryja, K. Ba, M. Galan, C. Tatard and J.F. Cosson. 2013. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal, West Africa. Mol. Ecol. 22: 286–300.CrossrefPubMedGoogle Scholar

  • Kozak, K.H., C.H. Graham and J.J. Wiens. 2008. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 23: 141–148.CrossrefPubMedGoogle Scholar

  • Landguth, E.L. and S.A. Cushman. 2010. CDPOP: a spatially-explicit cost distance population genetics program. Mol. Ecol. Resour. 10: 156–161.CrossrefPubMedGoogle Scholar

  • Landguth, E.L., S.A. Cushman, M.K. Schwartz, K.S. McKelvey, M. Murphy and G. Luikart. 2010. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19: 4179–4191.CrossrefGoogle Scholar

  • Landguth, E.L., B.K. Hand, J. Glassy, S.A. Cushman and M.A. Sawaya. 2012. UNICOR: a species connectivity and corridor network simulator. Ecography 35: 9–14.CrossrefGoogle Scholar

  • Langella, O. 1999. Populations, 1.2.30 Copyright (C) Free Software Foundation.Google Scholar

  • Legendre, P. and A. Vaudour 1991. The R package: multidimensional analysis, spatial analysis. Université de Montréal Département de sciences biologiques, Montréal.Google Scholar

  • Lesbarreres, D. and L. Fahrig. 2012. Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol. Evol. 27: 374–380.Google Scholar

  • Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15: 237–240.Google Scholar

  • Lowe, W.H. and F. Allendorf. 2010. What can genetics tell us about population connectivity? Mol. Ecol. 19: 3038–3051.PubMedCrossrefGoogle Scholar

  • Lowry, D.B. 2010. Landscape evolutionary genomics. Biol. Lett. 6: 502–504.CrossrefPubMedGoogle Scholar

  • Malausa, T., A. Gilles, E. Meglecz, H. Blanquart, S. Duthoy, C. Costedoat, V. Dubut, N. Pech, P. Castagnone-Sereno, C. Delye, N. Feau, P. Frey, P. Gauthier, T. Guillemaud, L. Hazard, V. Le Corre, B. Lung-Escarmant, P.J.G. Male, S. Ferreira and J.F. Martin. 2011. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol. Ecol. Resour. 11: 638–644.CrossrefGoogle Scholar

  • Manel, S. and G. Segelbacher. 2009. Perspectives and challenges in landscape genetics. Mol. Ecol. 18: 1821–1822.PubMedCrossrefGoogle Scholar

  • Manel, S., M.K. Schwartz, G. Luikart and P. Taberlet. 2003. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18: 189–197.CrossrefGoogle Scholar

  • Manel, S., S. Joost, B.K. Epperson, R. Holderegger, A. Storfer, M.S. Rosenberg, K.T. Scribner, A. Bonin and M.J. Fortin. 2010. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol. Ecol. 19: 3760–3772.CrossrefPubMedGoogle Scholar

  • Manel, S., C.H. Albert and N.G. Yoccoz. 2012. Sampling in landscape genomics. Methods Mol. Biol. 888: 3–12.CrossrefPubMedGoogle Scholar

  • Mapelli, F.J., M.S. Mora, P.M. Mirol and M.J. Kittlein. 2012. Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conserv. Genet. 13: 165–181.CrossrefGoogle Scholar

  • McGarigal, K. and B.J. Marks. 1994. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. University State Oregon Forest Sciences Department, Corvallis, OR.Google Scholar

  • McRae, B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.CrossrefPubMedGoogle Scholar

  • McRae, B.H. and V.B. Shah. 2011. Circuitscape user guide. Online. The University of California, Santa Barbara, CA. Available at: http://www.circuitscape.org. Accessed 15 June, 2013.

  • Mech, S.G. and J.G. Hallett. 2001. Evaluating the effectiveness of corridors: a genetic approach. Conserv. Biol. 15: 467–474.CrossrefGoogle Scholar

  • Minor E. and D. Urban. 2008. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22: 297–307.PubMedGoogle Scholar

  • Mitchell-Olds, T., M. Feder and G. Wray. 2008. Evolutionary and ecological functional genomics. Heredity 100: 101–102.CrossrefGoogle Scholar

  • Moore, J.A., D.A. Tallmon, J. Nielsen and S. Pyare. 2011. Effects of the landscape on boreal toad gene flow: does the pattern-process relationship hold true across distinct landscapes at the northern range margin? Mol. Ecol. 20: 4858–4869.CrossrefPubMedGoogle Scholar

  • Morin, P.A., G. Luikart and R.K. Wayne. 2004. SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 19: 208–216.CrossrefGoogle Scholar

  • Moritz, C. 1994. Defining evolutionarily-significant-units for conservation. Trends Ecol. Evol. 9: 373–375.CrossrefPubMedGoogle Scholar

  • Munshi-South, J. 2012. Urban landscape genetics: canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York City. Mol. Ecol. 21: 1360–1378.CrossrefGoogle Scholar

  • Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283.CrossrefGoogle Scholar

  • Nei, M. 1983. Genetic diversity and the neutral mutation theory. Heredity 51: 531.Google Scholar

  • Olivier, P.I., R.J. Van Aarde and S.M. Ferreira. 2009. Support for a metapopulation structure among mammals. Mamm. Rev. 39: 178–192.CrossrefGoogle Scholar

  • Oyler-McCance, S.J., B.C. Fedy and E.L. Landguth. 2013. Sample design effects in landscape genetics. Conserv. Genet. 14:275–285.CrossrefGoogle Scholar

  • Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537–2539.CrossrefGoogle Scholar

  • Perez-Espona, S., F.J. Perez-Barberia, J.E. McLeod, C.D. Jiggins, I.J. Gordon and J.M. Pemberton. 2008. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol. Ecol. 17: 981–996.CrossrefGoogle Scholar

  • Piry, S., A. Alapetite, J.M. Cornuet, D. Paetkau, L. Baudouin and A. Estoup. 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95: 536–539.CrossrefGoogle Scholar

  • Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar

  • Rabinowitz, A. and K.A. Zeller. 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143: 939–945.CrossrefGoogle Scholar

  • Ray, N., A. Lehmann and P. Joly. 2002. Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers. Conserv. 11: 2143–2165.CrossrefGoogle Scholar

  • Raymond, M. and F. Rousset. 1995. GENEPOP (VERSION-1.2) – population-genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.Google Scholar

  • Ronce, O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38: 231–253.CrossrefGoogle Scholar

  • Rosenberg, M.S. and C.D. Anderson. 2011. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol. Evol. 2: 229–232.CrossrefGoogle Scholar

  • Rousset, F. 2002. Partial Mantel tests: reply to Castellano and Balletto. Evolution 56: 1874–1875.CrossrefGoogle Scholar

  • Ruiz-Garcia, M., E. Payan, A. Murillo and D. Alvarez. 2006. DNA microsatellite characterization of the jaguar (Panthera onca) in Colombia. Genes Genet. Syst. 81: 115–127.CrossrefGoogle Scholar

  • Schoville, S.D., A. Bonin, O. François, S. Lobreaux, C. Melodelima and S. Manel. 2012. Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43: 23–43.CrossrefGoogle Scholar

  • Schwartz, M.K. and K.S. McKelvey. 2009. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10: 441–452.CrossrefGoogle Scholar

  • Scoble, J. and A.J. Lowe. 2010. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers. Distrib. 16: 343–353.CrossrefGoogle Scholar

  • Segelbacher, G., S.A. Cushman, B.K. Epperson, M.J. Fortin, O. Francois, O.J. Hardy, R. Holderegger, P. Taberlet, L.P. Waits and S. Manel. 2010. Applications of landscape genetics in conservation biology: concepts and challenges. Conserv. Genet. 11: 375–385.CrossrefGoogle Scholar

  • Short Bull, R.A., S. Cushman, A.R. Mace, T. Chilton, K.C. Kendall, E.L. Landguth, M.K. Schwartz, K. Mckelvey, F.W. Allendorf and G. Luikart. 2011. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20: 1092–1107.CrossrefGoogle Scholar

  • Smit, H.A., J. Watson and B.J. van Vuuren. 2010. Relative importance of habitat connectivity in shaping the genetic profiles of two southern African elephant-shrews. J. Biogeogr. 37: 857–864.CrossrefGoogle Scholar

  • Storfer, A., M.A. Murphy, J.S. Evans, C.S. Goldberg, S. Robinson, S.F. Spear, R. Dezzani, E. Delmelle, L. Vierling and L.P. Waits. 2007. Putting the ‘landscape’ in landscape genetics. Heredity 98: 128–142.PubMedCrossrefGoogle Scholar

  • Storfer, A., M.A. Murphy, S.F. Spear, R. Holderegger and L.P. Waits. 2010. Landscape genetics: where are we now? Mol. Ecol. 19: 3496–3514.CrossrefPubMedGoogle Scholar

  • Tallmon, D.A., A. Koyuk, G. Luikart and M.A. Beaumont. 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol. Ecol. Resources 8: 299–301.CrossrefGoogle Scholar

  • Taylor, P.D., L. Fahrig, K. Henein and G. Merriam. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.CrossrefGoogle Scholar

  • Ter Braak, C.J.F. and P. Smilauer 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar

  • Thioulouse, J., D. Chessel, S. Dolédec and J.M. Olivier. 1997. ADE-4: a multivariate analysis and graphical display software. Stat. Comput.7: 75–83.CrossrefGoogle Scholar

  • Tischendorf, L. and L. Fahrig. 2000. How should we measure landscape connectivity? Landscape Ecol. 15: 633–641.CrossrefGoogle Scholar

  • Tollenaere C., C. Brouat, J.M. Duplantier, L. Rahalison, S. Rahelinirina, M. Pascal, H. Moné, G. Mouahid, H. Leirs and J.F. Cosson. 2010. Phylogeography of the introduced species Rattus rattus in the western Indian Ocean, with special emphasis on the colonization history of Madagascar. J. Biogeogr. 37: 398–410.Google Scholar

  • Turner, M.G., R.H. Gardner and R.V. O’Neill. 2001. Landscape ecology in theory and practice. Springer-Verlag, New York. pp. 401.Google Scholar

  • Veech, J.A. and T.O. Crist. 2009. PARTITION: software for hierarchical partitioning of species diversity, version 3.0. http://www.users.muohio.edu/cristto/partition.htm. Accessed 15 June, 2013.

  • Vernesi, C., M.W. Bruford, G. Bertorelle, E. Pecchioli, A. Rizzoli and H.C. Hauffe. 2008. Where’s the conservation in conservation genetics? Conserv. Biol. 22: 802–804.CrossrefGoogle Scholar

  • Vitalis, R., K. Dawson and P. Boursot. 2001. Interpretation of variation across marker loci as evidence of selection. Genetics 158: 1811–1823.PubMedGoogle Scholar

  • Wang, I.J. 2010. Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol. Ecol. 19: 2605–2608.PubMedCrossrefGoogle Scholar

  • Wang, I.J. 2011. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol. Ecol. 20: 2480–2482.CrossrefGoogle Scholar

  • Wasserman, T.N., S.A. Cushman, J.S. Littell, A.J. Shirk and E.L. Landguth. 2013. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change. Conserv. Genet. 14: 529–541.CrossrefGoogle Scholar

  • Wilson, G.A. and B. Rannala. 2003. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163: 1177–1191.PubMedGoogle Scholar

  • Wright, S. 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354.Google Scholar

  • Wu, J. and R.J. Hobbs. 2007. Landscape ecology: the state-of-the-science. In: (J. Wu and R.J. Hobbs) Key topics in landscape ecology. Cambridge University Press, Cambridge, UK. pp. 271–287.Google Scholar

About the article

Corresponding author: Claudine Montgelard, Laboratory of Biogeography and Vertebrate Ecology (EPHE), Centre for Evolutionary and Functional Ecology (CNRS UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France; and Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa, e-mail:


Received: 2012-12-24

Accepted: 2013-09-23

Published Online: 2013-11-07

Published in Print: 2014-05-01


Citation Information: Mammalia, Volume 78, Issue 2, Pages 139–157, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2012-0142.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Édouard Bélanger, Mathieu Leblond, and Steeve D. Côté
The Journal of Wildlife Management, 2018
[2]
Ana Lino, Carlos Fonseca, Danny Rojas, Erich Fischer, and Maria João Ramos Pereira
Mammalian Biology, 2018
[3]
W. Matthew Vander Haegen, Gene R. Orth, Aaron N. Johnston, and Mary J. Linders
The Journal of Wildlife Management, 2017
[4]
Andrew Storfer, Brendan Epstein, Menna Jones, Steven Micheletti, Stephen F. Spear, Shelly Lachish, and Samantha Fox
Conservation Genetics, 2017
[5]
Pierre-Alexandre Rastorgueff, Véronique Arnal, Claudine Montgelard, Daniela M. Monsanto, Catharina W. Groenewald, William A. Haddad, Marie-Pierre Dubois, and Bettine Jansen van Vuuren
Biochemical Systematics and Ecology, 2016, Volume 64, Page 136

Comments (0)

Please log in or register to comment.
Log in