Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 79, Issue 2

Issues

Phylogenetic position of the giant house bat Scotophilus nigrita (Chiroptera, Vespertilionidae)

Peter Vallo
  • Corresponding author
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 60365 Brno, Czech Republic
  • Institute of Experimental Ecology, University Ulm, Albert Einstein Allee 11, M25, 89069 Ulm, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Benda
  • Department of Zoology, National Museum (Natural History), Václavské nám. 68, 11579 Praha 1, Czech Republic
  • Faculty of Science, Department of Zoology, Charles University, Viničná 7, 12844 Praha 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaroslav Červený
  • Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Koubek
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 60365 Brno, Czech Republic
  • Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-19 | DOI: https://doi.org/10.1515/mammalia-2013-0137

Abstract

The giant house bat Scotophilus nigrita, one of the largest vespertilioniform bat species in the world, is a poorly known taxon, especially with respect to its phylogenetic relationships to congeneric species. Its phylogenetic position was thus assessed by analysing DNA sequences of single mitochondrial and nuclear genes. Based on the mitochondrial cytochrome b, S. nigrita was found to be paraphyletic with respect to continental African species S. colias, S. dinganii, S. nigritellus and S. viridis. Analysis of sequences of the nuclear zinc finger protein gene on the Y chromosome corroborated the general pattern of the cytochrome b phylogeny, although phylogenetic relationships were poorly resolved. These results clearly contradict the published data on S. nigrita from Kenya for both markers, rendering the hypothesis of historical hybridization with S. colias implausible and questioning the taxonomic affiliation of the particular Kenyan sequence. A deep split in the cytochrome b phylogeny between S. nigrita from West and Southern Africa reached sequence divergence values of 7.6% to 8.1%, a finding that supports taxonomic elevation of the two currently recognized subspecies into separate species S. nigrita and S. alvenslebeni.

Keywords: cranial morphometrics; cytochrome b; phylogeny; zinc finger protein Y

References

  • Artyushin, I.V., A.A. Bannikova, V.S. Lebedev and S.V. Kruskop. 2009. Mitochondrial DNA relationships among North Palaearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between common serotine and northern bat. Zootaxa 2262: 40–52.Google Scholar

  • Baker, R.J. and R.D. Bradley. 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87: 643–662.Google Scholar

  • Bakwo, E.M. fils, A.B.A. Anong and F.-N.T. Fohouo. 2012. First record of the giant house bat Scotophilus nigrita in Cameroon (Mammalia, Chiroptera). Biodiv. J. 3: 55–58.Google Scholar

  • Bandelt H.-J., P. Forster and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37–48.Google Scholar

  • Berthier, P., L. Excoffier and M. Ruedi. 2006. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc. R. Soc. Lond. B. 273: 3101–3109.Google Scholar

  • Cathey, J.C., J.W. Bickham and J.C. Patton. 1998. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer. Evolution 52: 1224–1229.CrossrefGoogle Scholar

  • Cohen, K. and D. Linton. 2013. http://www.inaturalist.org/observations/250839.html (accessed July 30, 2013).

  • Dalquest, W.W. 1965. Mammals from the Save River, Mozambique, with descriptions of two new bats. J. Mammal. 46: 254–268.Google Scholar

  • De Vree, F. 1973. New data on Scotophilus gigas Dobson, 1875 (Microchiroptera,Vespertilionidae). Z. Säugetierk. 38: 189–196.Google Scholar

  • Dobson, G.E. 1875. Description of a very large species of Scotophilus from West Africa. Ann. Mag. Nat. Hist. Ser. 416: 122–123.Google Scholar

  • Happold, M. 2013. Scotophilus nigrita. Giant House-bat. In: (M. Happold and D. Happold, eds.) Mammals of Africa. Vol. IV. Hedgehogs, shrews and bats. Bloomsbury, London-New Delhi-New York-Sydney. pp. 678–679.Google Scholar

  • Hayman, R.W. and J.E. Hill. 1971. Order Chiroptera. In: (J. Meester and H.W. Setzer, eds.) The mammals of Africa: An identification manual. Part 2. Smithsonian Institution Press, Washington, D.C. pp. 1–73.Google Scholar

  • Horáček I., O. Fejfar and P. Hulva. 2006. A new genus of vespertilionid bat from Early Miocene of Jebel Zelten (Libya) with comments on Scotophilus and early history of vespertilionid bats. Lynx, n. s. 37: 131–150.Google Scholar

  • Jacobs, D.S., G.N. Eick, M.C. Schoeman and C.A. Mathee. 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii. J. Mammal. 87: 161–170.Google Scholar

  • Juste, J., P. Benda, J.L. García-Mudarra and C. Ibáñez. 2013. Phylogeny and systematics of Old World serotine bats (genus Eptesicus, Vespertilionidae, Chiroptera): an integrative approach. Zool. Scr. 42: 441–457.Web of ScienceGoogle Scholar

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.Google Scholar

  • Koopman, K.F. 1994. Chiroptera: systematics. In: (J. Niethammer, H. Schliemann and D. Stark, eds.) Handbook of zoology. Mammalia. Vol. VIII. Part 60. Walter de Gruyter, Berlin, Germany. pp. 1–217.Google Scholar

  • Monadjem, A., P.J. Taylor, F.D.P. Cotterill and M.C. Schoeman. 2010. Bats of Southern and Central Africa. A biogeographic and taxonomic synthesis. Wits University Press, Johannesburg, South Africa. pp. 596.Google Scholar

  • Nesi, N., E. Nakouné, C. Cruaud and A. Hassanin. 2011. DNA barcoding of African fruit bats (Mammalia, Pteropodidae). The mitochondrial genome does not provide a reliable discrimination between Epomophorus gambianus and Micropteropus pusillus. C. R. Biol. 334: 544–554.Web of ScienceGoogle Scholar

  • Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossrefGoogle Scholar

  • Robbins, C.B. 1978. Taxonomic identification and history of Scotophilus nigrita (Schreber) (Chiroptera: Vespertilionidae). J. Mammal. 59: 212–213.Google Scholar

  • Robbins, C.B., F. De Vree and V. Van Cakenberghe. 1985. A systematic revision of the African bat genus Scotophilus (Vespertilionidae). Ann. Mus. R. Afr. Centrale, Sci. Zool. 246: 51–84.Google Scholar

  • Ronquist, J. and J.J. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.CrossrefPubMedGoogle Scholar

  • Schreber, J.C.D. von. 1774. Die Säugethiere in Abbildungen nach der Natur mit Beschreibungen. Vol. 1. Wolfgang Walther, Erlangen, Germany. pp. 194.Google Scholar

  • Simmons, N. 2005. Order Chiroptera. In: (D.E. Wilson and D.M. Reeder, eds.) Mammal species of the World: a taxonomic and geographic reference. 3rd ed. The Johns Hopkins University Press, Baltimore, MD. pp. 312–529.Google Scholar

  • Simmons, M.P. and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49: 369–381.Google Scholar

  • Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. In: (R.M. Miura, ed.) Some mathematical questions in biology: DNA sequence analysis. Lectures on mathematics in the life sciences. American Mathematical Society, Providence, RI. pp. 57–86.Google Scholar

  • Tobe, S.S., A.C. Kitchener and A.M.T. Linacre. 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PloS One 5: 1–14.Web of ScienceGoogle Scholar

  • Trujillo, R.G., J.C. Patton, D.A. Schlitter and J.W. Bickham. 2009. Molecular phylogenetics of the bat genus Scotophilus (Chiroptera: Vespertilionidae): perspectives from paternally and maternally inherited genomes. J. Mammal. 90: 548–560.Web of ScienceGoogle Scholar

  • Vallo, P., P. Benda and A. Reiter. 2011. Yellow-bellied or white-bellied? Identity of Arabian house bats (Vespertilionidae: Scotophilus) revealed from mitochondrial DNA and morphology. Afr. Zool. 46: 350–361.Web of ScienceGoogle Scholar

  • Vallo P., P. Benda, J. Červený and P. Koubek. 2013. Conflicting mitochondrial and nuclear paraphyly in small-sized West African house bats (Vespertilionidae). Zool. Scr. 42: 1–12.Web of ScienceGoogle Scholar

  • Yang, Z. 1996. Among-site variation and its impact on phylogenetic analysis. Trends Ecol. Evol. 11: 367–372.Google Scholar

About the article

Corresponding author: Peter Vallo, Institute of Vertebrate Biology AS CR, v.v.i., Květná 8, 603 65 Brno, Czech Republic, e-mail: ; and Institute of Experimental Ecology, University Ulm, Albert Einstein Allee 11, M25, 89069 Ulm, Germany


Received: 2013-09-05

Accepted: 2014-05-14

Published Online: 2014-06-19

Published in Print: 2015-05-01


Citation Information: Mammalia, Volume 79, Issue 2, Pages 225–231, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2013-0137.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Terrence C. Demos, Paul W. Webala, Michael Bartonjo, and Bruce D. Patterson
Frontiers in Ecology and Evolution, 2018, Volume 6

Comments (0)

Please log in or register to comment.
Log in