Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

IMPACT FACTOR 2018: 0.732
5-year IMPACT FACTOR: 0.794

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

See all formats and pricing
More options …
Volume 80, Issue 1


Characterization and selection of microhabitat of Microcavia australis (Rodentia: Caviidae): first data in a rocky habitat in the hyperarid Monte Desert of Argentina

Natalia Andino
  • Corresponding author
  • Interacciones Biológicas del Desierto (INTERBIODES), Instituto y Museo de Ciencias Naturales, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917.CABA, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos E. Borghi
  • Interacciones Biológicas del Desierto (INTERBIODES), Instituto y Museo de Ciencias Naturales, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917.CABA, Argentina
  • Centro de Investigaciones de la Geósfera y la Biósfera (CIGEBIO), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stella M. Giannoni
  • Interacciones Biológicas del Desierto (INTERBIODES), Instituto y Museo de Ciencias Naturales, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917.CABA, Argentina
  • Centro de Investigaciones de la Geósfera y la Biósfera (CIGEBIO), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-13 | DOI: https://doi.org/10.1515/mammalia-2014-0081


A rocky habitat, in its broadest sense, may be described as any locality that contains boulders, rocks, scree, pebbles, outcrops, cliffs, or caves. In these habitats, mammals find shelter sites that they use as nesting sites or dens to raise their young in a stable microclimate that is relatively secure from predators. The aim of this study was to characterize and evaluate the microhabitat selection by the southern mountain cavy (Microcavia australis Geoffroy and d’Orbigny) in a rocky habitat. This rodent selected the highest and deepest crevices, which provided them with a more stable microenvironment than outside. The present study is the first to report a southern mountain cavy population associated with a rocky habitat, suggesting a strong plasticity to inhabit a variety of habitats, as indicated by its wide distribution.

Keywords: crevices; Microcavia australis; microhabitat characterization; Monte Desert; rock outcrops

Dedicated to: This article is dedicated to the memory of our deceased colleague Verónica Lahoz.


  • Altuna, C.A. 1985. Microclima de cuevas de Ctenomys pearsoni (Rodentia, Octodontidae) en arroyo carrasco (Montevideo). Actas J. Zool. Uruguay 1: 59–60.Google Scholar

  • Andino, N., L. Reus, F. Cappa, V. Campos and S.M. Giannoni. 2011. Social environment and agonistic interactions: strategies in a small social mammal. Ethology 117: 992–1002.CrossrefGoogle Scholar

  • Arends A. and B.K. McNab. 2001. The comparative energetics of “Caviomorph” rodents. Comp. Biochem. Phys. A 130: 105–122.CrossrefGoogle Scholar

  • Armitage, K.B. 1988. Resources and social organization of ground-dwelling squirrels. In: (C.N. Slobodchikoff, ed.) The ecology of social behavior. Academic Press, Inc. Horcourt Brace Jovanovich, Publishers, San Diego, California. pp. 131–155.Google Scholar

  • Beck, C.W. and B.D. Watts. 1997. The effect of cover and food on space use by wintering song sparrows and field sparrows. Can. J. Zool. 75: 1636–1641.Google Scholar

  • Brashares, J.S. and P. Arcese. 2002. Role of forage, habitat and predation in the behavioural plasticity of a small African antelope. J. Anim. Ecol. 71: 626–638.CrossrefGoogle Scholar

  • Branch, L.C., D. Villarreal, A. Sosa, M. Pessino, M. Machicote, P. Lerner, P. Borraz, M. Urioste and J.L. Hierro. 1994. Estructura de las colonias de vizcacha y problemas asociados con la estimación de densidad poblacional en base a la actividad de las vizcacheras. Argentina. Mastozool. Neotrop. 1: 135–142.Google Scholar

  • Bronikowski, A.M. and J. Altmann. 1996. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39: 11–25.CrossrefGoogle Scholar

  • Burnham, K.P. and D.R. Anderson. 2002. Model selection and multimodel inference: a practical information – theoretic approach. Springer-Verlag, New York.Google Scholar

  • Burda, H., R. Šumbera and S. Begall. 2007. Microclimate in burrows of subterranean rodents – revisited. In: (S. Begall, H. Burda and C.E. Schleich, eds.). Subterranean rodents: news from underground. Springer-Verlag, Berlin Heidelberg. pp. 21–33.Google Scholar

  • Cabrera, A.L. 1994. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería, Tomo II, Fascículo 1. ACME, Buenos Aires. pp. 85.Google Scholar

  • Calede, J.M., S.B. Hopkins and E. Davis. 2011. Turnover in burrowing rodents: the roles of competition and habitat change. Palaeogeogr. Palaeocl. (3): 242–255.CrossrefGoogle Scholar

  • Calhoud, P. 2013. “Exact” package version 1.4: unconditional exact test. R package version 3.0.3, URL.Google Scholar

  • Campos, C.M. 1997.Utilization of food resources by small and medium sized mammals of Monte desert, Argentina. Mastozool. Neotrop. 4(2): 155–156.Google Scholar

  • Campos, C., C. Borghi, S. Giannoni, A. Mangeaud and M. Tognelli. 2006. Bark consumption of creosote bush (Larrea cuneifolia) by cuises (Microcavia australis): effect on branch survival and reproduction. Ecol. Aust. 16: 1–6.Google Scholar

  • Campos, V.E., Andino, N., Cappa F.M.; Reus, M.L. and S. Giannoni. 2013. Microhabitat selection by Octomys mimax (Rodentia: Octodontidae) in the Monte Desert is affected by attributes and thermal properties of crevices. Revista Chilena de Historia Natural 86: 315–324.Google Scholar

  • Chapman, J. and J. Flux. 1991. Rabbits, hares and pikas: status survey and conservation action plan. World Conservation Union, United Kingdom.Google Scholar

  • Contreras, J.R. and V.G. Roig. 1978. Observaciones sobre la organización social, la ecología y la estructura de los habitáculos de Microcavia australis en Ñacuñán, Provincia de Mendoza. Ecosur 5: 191–199.Google Scholar

  • Contreras, L.C. and B.K. McNab. 1990. Thermoregulation and energetics in subterranean mammals. In: (E. Nevo and O.A. Reig, eds.) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York. pp. 231–250.Google Scholar

  • Contreras, V.H., S. Pontoriero, A. Perez and P. Perucca. 1999. Consideraciones sobre la génesis, fauna y edad de los travertinos de la laja, Albardón, San Juan. CD Síntesis del cuaternario de la Provincia de San Juan. XI Reunión de Campo del Cuaternario. Revista digital Ciencias. San Juan. FCEFyN.UNSJ.Google Scholar

  • Covich, A.P. 1976. Analyzing shapes of foraging areas: some ecological economic theories. Annu. Rev. Ecol. Syst. 7: 235–257.CrossrefGoogle Scholar

  • Ebensperger, L.A. 2001. A review of the evolutionary causes of rodent group-living. Acta Theriol. 46: 155.144.Google Scholar

  • Ebensperger, L.A. and F. Bozinovic. 2000. Energetics and burrowing behavior in the semifossorial degu Octodon degus (Rodentia: Octodontidae). J. Zool. 252: 179–186.CrossrefGoogle Scholar

  • Ebensperger, L.A., P. Taraborelli, S. Giannoni, M.J. Hurtado, C. León and F. Bozinovic. 2006. Nest and space use in highland population of the lesser cavy, Microcavia australis. J. Mammal. 87: 834–840.CrossrefGoogle Scholar

  • Ghobrial, L. and T.A. Nour. 1975. The physiological adaptations of desert rodents. In: (I. Prakash I and P.K. Ghosh, eds.) Rodents in desert environments: Monographiae Biologicae. The Hague, Netherlands. pp. 413–444.Google Scholar

  • Gutiérrez Elorza, M. and J. Rodriguez Vidal. 1984. Fenómenos de sufosión (piping) en la depresión media del Ebro. Cuadernos de Investigación Geográfica (Logroño) 10:75–83.Google Scholar

  • Hall, L.S. and K. Myers. 1978. Variations in the microclimate in rabbit warrens in semi-arid New South Wales. Aust. J. Ecol 3: 187–194.Google Scholar

  • Harrel, F. 2014. Rms package versión 4.2-0: regression modeling strategies. R package version 3.0.3, URL. http://biostat.mc.vanderbilt.edu/rms.

  • Hickman, G.C. 1977. Burrow system structure of Pappogeomys castanops (Geomyidae) in Lubbock Country, Texas. Am. Midl. Nat 97: 50–58.CrossrefGoogle Scholar

  • Hoeck, H.N. 1982. Population dynamics, dispersal and genetic isolation in two species of hyrax (Heterohyrax brucei and Procavia johnstoni) on habitat islands in the Serengeti. J. Comp. Ethol 59: 110–115.Google Scholar

  • Johnson, C.J., S.E. Nielsen, E.H. Merrill, T.L. McDonald and M.S. Boyce. 2006. Resource selection functions based on use availability data theoretical motivation and evaluation methods. J. Wild Manag. 70: 347–357.Google Scholar

  • Kay, R.F. and W.G. Whitford. 1978. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in Southcentral New Mexico. Am. Midl. Nat 99: 270–279.CrossrefGoogle Scholar

  • Kennerly, T.E. Jr. 1964. Microenvironmental conditions of the pocket gopher burrow. Text. J. Sci 16: 395–441.Google Scholar

  • Kinlaw, A. 1999. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41: 127–145.CrossrefGoogle Scholar

  • Kotler, B. 1984. Risk of predation and the structure of desert rodent communities. Ecology 65: 689–701.CrossrefGoogle Scholar

  • Lagos, V.O., F. Bozinovic and L.C. Contreras. 1995a. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: thermoregulatory constraints or predation risk? J. Mammal. 76: 900–905.CrossrefGoogle Scholar

  • Lagos, V.O., L.C. Contreras, P.L. Meserve, J.R. Gutiérrez and F.M Jaksic. 1995b. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74: 259–264.CrossrefGoogle Scholar

  • Lott, D.F. 1991. Intraspecific variation in the social systems of wild vertebrates. Cambridge Univ. Press, Cambridge, UK. pp, 230.Google Scholar

  • Luna, F., C.D. Antinuchi. 2006. Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can. J. Zool. 84: 661–667.Google Scholar

  • Luna, F. and C.D. Antinuchi. 2007. Energetics and thermoregulation during digging in the rodent tuco-tuco (Ctenomys talarum). Comp. Biochem. Phys. A 146: 559–564.CrossrefGoogle Scholar

  • MacDonald, S., C. Jones. 1987. Ochotona collaris. Mamm. Species 281: 1–4.Google Scholar

  • Mares, M. 1997. The geobiological interface: granitic outcrops as a selective force in mammalian evolution. J. R. Soc. West. Aust. 80: 131–139.Google Scholar

  • Mares, M.A. and T.E. Lacher. 1987. Ecological, morphological and behavioral convergence in rock-dwelling mammals. Curr. Mammal. 1: 307–348.CrossrefGoogle Scholar

  • Nakagawa, S. and H. Schielzeth. 2013. A general and simple method for obtaining R2 for generalized linear mixed-effects models. Method. Ecol. Evol. 4(2): 133–142.Google Scholar

  • Nutt, K.J. 2007. Socioecology of rock-dwelling rodents. In: (J.O. Wolf and P.W. Sherman, eds.) Rodents societies: an ecological and evolutionary perspective. Chicago University Press. pp. 416–426.Google Scholar

  • Ojeda, R.A. 1989. Small mammal responses to fire in the Monte Desert, Argentina. J. Mammal. 70: 416–420.CrossrefGoogle Scholar

  • Perissinotti, P.P., C.D. Antenucci, R. Zenuto and F. Luna. 2009. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Phys. A 154: 298–307.Google Scholar

  • Poblete, A. and J. Minetti. 1999. Configuración espacial del clima de San Juan. Síntesis del cuaternario de la provincia de San Juan, INGEO, Universidad Nacional de San Juan, San Juan, Argentina.Google Scholar

  • R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Redford, K.H. and J.F. Eisenberg. 1992. Mammals of the neotropics: the southern cone. University of Chicago Press, Chicago. pp. 430.Google Scholar

  • Reichman, O.J. and S.C. Smith. 1990. Burrows and burrowing behavior by mammals. In: (Genoways, ed.) Current mammalogy. Plenum Press, New York and London. pp. 197–244.Google Scholar

  • Rezende, E.L., A. Cortés, L.D. Bacigalupe, R.F. Nespolo and F. Bozinovic. 2003. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J. Arid. Environ. 55: 63–74.CrossrefGoogle Scholar

  • Rood, J. 1967. Observaciones sobre la ecología y el comportamiento de los Caviinae de la Argentina (Mammalia, Rodentia). Zoología Platense. Investigaciones Zoologicas y Paleontologicas. 1(1): 1–6.Google Scholar

  • Rood, J.P. 1970. Ecology and social behaviour of the desert cavy (Microcavia australis). Am. Midl. Nat. 83: 415–454.CrossrefGoogle Scholar

  • Rossell, Jr, C.R., S.H. Roach, I.M. Rossell and C. McGrath. 2009. Attributes of rock crevices selected by allegheny and eastern woodrats in the zone of contact in the Appalachian mountains of North Carolina. Am. Midl. Nat. 162: 200–206.Google Scholar

  • Sassi, P., C.E Borghi and F. Bozinovic. 2011. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) inhabiting habitats with different plant qualities. J. Mammal. 88: 165–172.CrossrefGoogle Scholar

  • Schradin, C. and N. Pillay. 2006: Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17: 452–458.CrossrefGoogle Scholar

  • Seamon, J.O. and Adler, G.H. 1996. Population performance of generalist and specialist rodents along habitat gradients. Can. J. Zool. 74: 1130–1139.Google Scholar

  • Shenbrot, G., B. Krasnov, I. Khokhlovaw, T. Demidovaz and L. Fielden. 2002. Habitat-dependent differences in architecture and microclimate of the burrows of Sundevall’s jird (Meriones crassus) (Rodentia: Gerbillinae) in the Negev Desert, Israel. J. Arid Environ. 51: 265–279.CrossrefGoogle Scholar

  • Shipley, L.A., J.S. Forbey, B.D. Moore. 2009. Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr. Comp. Biol. 49: 274–290.CrossrefGoogle Scholar

  • Šumbera, R., W.N. Chitaukali, M. Elichová, J. Kubová and H. Burda. 2004. Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent, the silvery mole-rat (Heliophobius argenteocinereus). J. Zool. 263: 409–416.Google Scholar

  • Sundell, J. and H. Ylönen. 2004. Behaviour and choice of refuge by voles under predation risk. Behav. Ecol. Sociobiol. 56: 263–269.CrossrefGoogle Scholar

  • Suvires, G.M. 2004. Procesos de piping en el piedemonte distal de la Precordillera Oriental, provincia de San Juan: factores y relieve. Rev. Asoc. Geol. Argent. 59: 385–393.Google Scholar

  • Tabeni, S. and Ojeda, R.A. 2005. Ecology of the Monte Desert small mammals in disturbed and undisturbed habitats. J. Arid Environ. 63:244–255.CrossrefGoogle Scholar

  • Taraborelli, P. 2009. Is communal burrowing or burrow sharing a benefit of group living in the lesser cavy Microcavia australis? Acta Theriol. 54: 249–258.CrossrefGoogle Scholar

  • Taraborelli, P. and P. Moreno. 2009. Comparing composition of social groups, mating system and social behaviour in two populations of Microcavia australis. Mamm. Biol. 74: 15–24.Google Scholar

  • Taraborelli, P., N. Borruel, A. Sandobal and S. Giannoni. 2009. Influence of biotic and abiotic factors on the structure of burrows of the cavy Microcavia australis. Mastozool. Neotrop. 16: 411–421.Google Scholar

  • Thompson, S.D. 1987. Resource availability an microhabitat use by Merriam’s kangaroo rats, Dipodomys merriami, in the Mojave desert. J. Mamm. 68: 256–265.Google Scholar

  • Tognelli, M.F., C.M. Campos, R.A. Ojeda and V.G. Roig. 1995. Is Microcavia australis (Rodentia: Caviidae) associated with a particular plant structure in the Monte desert of Argentina? Mammalia 59: 327–333.CrossrefGoogle Scholar

  • Tognelli, M.F., C.E. Borghi and C.M. Campos.1999. Effect of gnawing by Microcavia australis (Rodentia, Caviidae) on the survival of Geoffoea decorticans (Leguminosae) plants. J. Arid Environ. 41: 79–85.CrossrefGoogle Scholar

  • Tognelli, M.F., C.M. Campos and R.A. Ojeda. 2001. Microcavia australis. Mamm. Species 648: 1–4.Google Scholar

  • Torres, M., C.E. Borghi, S.M. Giannoni and A. Pattini. 2003. Portal orientation and architecture of burrows in Tympanoctomys barrerae (Rodentia, Octodontidae). J. Mammal 84: 541–546.CrossrefGoogle Scholar

  • Trainor, C., A. Fisher, J. Woinarski and S. Churchill. 2000. Multiscale patterns of habitat use by the Carpentarian rock-rat (Zyzomys palatalis) and the common rock-rat (Z. argurus). Wildl. Res. 27: 319–332.Google Scholar

  • Turner, S. 2000. The extended organism: the physiology of animal-built structures. Harvard University Press, Cambridge, Massachusetts, and London, England. pp. 229.Google Scholar

  • Vélez, S., P. Sassi, C. Borghi, M. Monclus and M. Fornes. 2010. Effect of climatic variables of seasonal morphological changes in the testis and epididymis in the wild rodents Microcavia australis from the Andes Mountains, Argentina. J. Exp. Zool. A 313: 474–483.Google Scholar

  • Walsberg, G.E. 2000. Small mammals in hot deserts: some generealizations revisited. BioScience 50:109–120.CrossrefGoogle Scholar

  • Williams, S.E., Marsh H. and J. Winter. 2001. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83: 1317–1329.CrossrefGoogle Scholar

  • Wilson, D.E. and D.M. Reeder. 2005. Mammal species of the world. A taxonomic and geographic reference (3rd ed). Johns Hopkins University Press. pp. 140–142.Google Scholar

  • Yacante, G., G. Suvires and B. Pereyra. 1997. Procesos de sufosión (piping) en dos sitios de la Precordillera, San Juan, Argentina. II Jornadas de Geología de Precordillera, San Juan: 184–189.Google Scholar

About the article

Corresponding author: Natalia Andino, Interacciones Biológicas del Desierto (INTERBIODES), Instituto y Museo de Ciencias Naturales, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina, e-mail: ; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917.CABA, Argentina

Received: 2014-05-27

Accepted: 2014-11-06

Published Online: 2014-12-13

Published in Print: 2016-01-01

Citation Information: Mammalia, Volume 80, Issue 1, Pages 71–81, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2014-0081.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in