Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

IMPACT FACTOR 2018: 0.732
5-year IMPACT FACTOR: 0.794

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

See all formats and pricing
More options …
Volume 80, Issue 3


Tree selection by roosting bats in a European temperate lowland sub-Atlantic forest

Laurent Tillon
  • Corresponding author
  • Office National des Forêts, Direction des Forêts et des Risques Naturels, 2 avenue de Saint-Mandé, 75570 Paris cedex 12, France
  • Ecole Pratique des Hautes Etudes, Centre d’écologie fonctionnelle et évolutive (CEFE), Montpellier cedex 5, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katia Bresso / Stéphane Aulagnier
  • Comportement et Ecologie de la Faune Sauvage, INRA, C.S. 52627, 31326 Castanet Tolosan cedex, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-04 | DOI: https://doi.org/10.1515/mammalia-2014-0095


Trees are the main roosts for several European bat species but forestry practices are most often detrimental for them. After checking for the presence or absence of bats in trees, we collected a number of variables to describe trees within a lowland sub-Atlantic oak-dominated forest. We modelled the usage of the trees by bats according to the main characteristics of trees (11 quantitative and 13 qualitative variables) with a logistical regression analysis. Our results show that the number of cavities in the tree is the main variable that induces the occupancy by bats. There is a “typical” lowland tree preferred by bats which is a healthy oak tree of large diameter. We finally provide some guidance for woodland managers to maintain bat roosts, including maintaining some trees of large diameter, protecting small areas of old trees with cavities).

Keywords: Chiroptera; oak; predictive analysis; tree roost; woodland management


  • Baker, M.D. and M.J. Lacki. 2006. Day-roosting habitat of female long-legged Myotis in ponderosa pine forests. J. Wildl. Manage. 70: 207–215.Google Scholar

  • Barclay, R.M.R. and A. Kurta. 2007. Ecology and behavior of bats roosting in tree cavities and under bark. In: (M.J. Lacki, J.P. Hayes and A. Kurta, eds.) Bats in forests. Conservation and management. The Johns Hopkins University Press, Baltimore, MD. pp. 17–59.Google Scholar

  • Betts, B.J. 1998. Roosts used by maternity colonies of silver-haired bats in northeastern Oregon. J. Mammal. 79: 643–650.Google Scholar

  • Blondel, J. 2003. Les cavités naturelles, refuges et sites d’alimentation et de reproduction pour la faune. L’exemple des oiseaux cavicoles. In: (D. Vallauri, ed.) Livre blanc sur la protection des forêts naturelles en France, forêts métropolitaines. Lavoisier Tec & Doc, Paris, France. pp. 67–74.Google Scholar

  • Boonman, M. 2000. Roost selection by noctules (Nyctalus noctula) and Daubenton’s bats (Myotis daubentonii). J. Zool. 251: 385–389.Google Scholar

  • Chung-MacCoubrey, A.L. 2003. Monitoring long-term reuse of trees by bats in pinyon-juniper woodlands of New Mexico. Wildl. Soc. Bull. 31: 73–79.Google Scholar

  • Crampton, L.H. and R.M.R. Barclay. 1998. Selection of roosting and foraging habitat by bats in different-aged aspen mixedwood stands. Conserv. Biol. 12: 1347–1358.Google Scholar

  • Dajoz, R. 1998. Les insectes et la forêt. Lavoisier Tec & Doc, Paris, France. pp. 594.Google Scholar

  • Entwistle, A.C., P.A. Racey and J.R. Speakman. 1997. Roost selection by the brown long-eared bat Plecotus auritus. J. Appl. Ecol. 34: 399–408.Google Scholar

  • Fellers, G.M. and E.D. Pierson. 2002. Habitat use and foraging behavior of Townsend’s big-eared bat (Corynorhinus townsendii) in coastal California. J. Mammal. 83: 167–177.Google Scholar

  • Guldin J.M., W.H. Emmingham, S.A. Carter and D.A. Saugey. 2007. Silvicultural practices and management of habitat for bats. In: (M.J. Lacki, J.P. Hayes and A. Kurta, eds.) Bats in forests. Conservation and management. The Johns Hopkins University Press, Baltimore, MD. pp. 177–205.Google Scholar

  • Hallé, F. 1999. Eloge de la plante: pour une nouvelle biologie. Seuil, Paris, France. pp. 347.Google Scholar

  • Hatsch, E., J.L. Dupouey, B. Dubreuil and J. Guillaud. 1999. Impact du champignon parasite Phellinus robustus et des cavités nidifiables sur la croissance des chênes sessile et pédonculé. Rev. for. Fr. 51: 511–521.Google Scholar

  • Hayes, J.P. and S.C. Loeb. 2007. The influences of forest management on bats in North America. In: (M.J. Lacki. J.P. Hayes and A. Kurta, eds.) Bats in forests. Conservation and management. The Johns Hopkins University Press, Baltimore, MD. pp. 207–235.Google Scholar

  • Hillen, J., A. Kiefer and M. Veith. 2010. Interannual fidelity to roosting habitat and flight paths by female western barbastelle bats. Acta Chiropterol. 12: 187–195.Web of ScienceGoogle Scholar

  • Kalcounis, M.C. and R.M. Brigham. 1998. Secondary use of aspen cavities by tree-roosting big brown bats. J. Wildl. Manage. 62: 603–611.Google Scholar

  • Kalcounis-Rüppell, M.C., J.M. Psyllakis and R.M. Brigham. 2005. Tree roost selection by bats: an empirical synthesis using meta-analysis. Wildl. Soc. Bull. 33: 1123–1132.Google Scholar

  • Keating, K.A. and S. Cherry. 2004. Use and interpretation of logistic regression in habitat-selection studies. J. Wildl. Manage. 68: 774–789.Google Scholar

  • Kerth, G. and B. König. 1999. Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136: 1187–1202.Google Scholar

  • Kerth, G., M. Wagner and B. König. 2001a. Roosting together, foraging apart: information transfert about food in unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav. Ecol. Sociobiol. 50: 283–291.Google Scholar

  • Kerth, G., K. Weissmann and B. König. 2001b. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126: 1–9.Google Scholar

  • Kunz, T.H. and M.B. Fenton. 2003. Bat ecology. The University of Chicago Press, Chicago and London, IL – UK. pp. 779.Google Scholar

  • Kunz, T.H. and L.F. Lumsden. 2003. Ecology of cavity and foliage roosting bats. In: (T.H. Kunz and M.B. Fenton, eds.) Bat ecology. The University of Chicago Press, Chicago and London, IL – UK. pp. 3–89.Google Scholar

  • Limpert, D.L., D.L. Birch, M.S. Scott, M. Andre and E. Gillam. 2007. Tree selection and landscape analysis of Eastern red bat day roosts. J. Wildl. Manage. 71: 478–486.Google Scholar

  • Martin, K. and J.M. Eadie. 1999. Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. For. Ecol. Manage. 115: 243–257.Google Scholar

  • Menzel, M.A., S.F. Owen, W.M. Ford, J.W. Edwards, P.B. Wood, B.R. Chapman and K.V. Miller. 2002. Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian mountains. For. Ecol. Manage. 155: 107–114.Google Scholar

  • Norusis, 1999. SPSS regression models™ 9.0. SPSS Inc., Chicago, IL.Google Scholar

  • Pénicaud, P. 2006. Enquête nationale sur les arbres-gîtes à chauves-souris arboricoles. Mamm. sauv. 52: 16–18.Google Scholar

  • Ruczyński, I. 2006. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N. leisleri) in Bialowieza Primeval Forest, Poland. Can. J. Zool. 84: 900–907.Google Scholar

  • Ruczyński, I. and W. Bogdanowicz. 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieza Primeval Forest, Eastern Poland. J. Mammal. 86: 921–930.Google Scholar

  • Ruczyński, I. and W. Bogdanowicz. 2008. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. J. Mammal., 89: 942–951.Google Scholar

  • Russo, D., L. Cistrone, G. Jones and S. Mazzoleni. 2004. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biol. Conserv. 117: 73–81.Google Scholar

  • Russo D., L. Cistrone and G. Jones. 2007. Emergence time in forest bats: the influence of canopyclosure. Acta Oecol. 31: 119–126.Google Scholar

  • Russo, D., L. Cistrone, A.P. Garonna and G. Jones. 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodiv. Conserv. 19: 2501–2515.Google Scholar

  • Sedgeley, J.A. and C.F.J. O’Donnell. 1999a. Factors influencing the selection of roost cavities by a temperate rainforest bat (Vespertilionidae: Chalinolobus tuberculatus) in New Zealand. J. Zool. 249: 437–446.Google Scholar

  • Sedgeley, J.A. and C.F.J. O’Donnell. 1999b. Roost selection by the long-tailed bat, Chalinolobus tuberculatus, in temperate New Zealand rainforest and its implications for the conservation of bats in managed forests. Biol. Conserv. 88: 261–276.Google Scholar

  • Taylor, R.J. and N.M. Savva. 1988. Use of roost sites by four species of bats in State forest in south-eastern Tasmania. Austr. Wildl. Res. 15: 637–645.Google Scholar

  • Tillon, L. 2007. Statut des chauves-souris peuplant le massif forestier de Rambouillet (78), état des lieux après 8 années de suivis et d’inventaire. Symbioses (n.s.) 20: 53–59.Google Scholar

  • Tillon, L. and S. Aulagnier. 2014. Tree cavities used as bat roosts in a European temperate lowland sub-Atlantic forest. Acta. Chiropterol. 16: 359–368.Web of ScienceGoogle Scholar

  • Vonhof, M.J. and R.M.R. Barclay. 1996. Roost-site selection and roosting ecology of forest-dwelling bats in southern British Columbia. Can. J. Zool. 74: 1797–1805.Google Scholar

  • Waldien, D.L., J.P. Hayes and E.B. Arnett. 2000. Day-roosts of female long-eared Myotis in western Oregon. J. Wildl. Manage. 64: 785–796.Google Scholar

  • Weller, T.J. 2007. Assessing population status of bats in forests: challenges and opportunities. In: (M.J. Lacki, J.P. Hayes and A. Kurta, eds.) Bats in forests. Conservation and management. The Johns Hopkins University Press, Baltimore, MD. pp. 263–291.Google Scholar

  • Weller, T.J. and C.J. Zabel. 2001. Characteristics of fringed Myotis day roosts in northern California. J. Wildl. Manage. 65: 489–497.Google Scholar

  • Wigley T.B., D.A. Miller and G.K. Yarrow. 2007. Planning for bats on forest industry lands in North America. In: (M.J. Lacki, J.P. Hayes and A. Kurta, eds.) Bats in forests. Conservation and management. The Johns Hopkins University Press, Baltimore, MD. pp. 293–318.Google Scholar

  • Willis, C.K.R., C.M. Voss and R.M. Brigham. 2006. Roost selection by forest-living female big brown bats (Eptesicus fuscus). J. Mammal. 87: 345–350.Google Scholar

  • Zielinski, W.J. and S.T. Gellman. 1999. Bat use of remnant old-growth redwood stands. Conserv. Biol. 13: 160–167.Google Scholar

About the article

Received: 2014-07-07

Accepted: 2015-02-24

Published Online: 2015-06-04

Published in Print: 2016-05-01

Citation Information: Mammalia, Volume 80, Issue 3, Pages 271–279, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2014-0095.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yoan Paillet, Nicolas Debaive, Frédéric Archaux, Eugénie Cateau, Olivier Gilg, Eric Guilbert, and Michal Bosela
PLOS ONE, 2019, Volume 14, Number 5, Page e0216500
Yoan Paillet, Frédéric Archaux, Solène du Puy, Christophe Bouget, Vincent Boulanger, Nicolas Debaive, Olivier Gilg, Frédéric Gosselin, Eric Guilbert, and Jennifer Firn
Journal of Applied Ecology, 2018

Comments (0)

Please log in or register to comment.
Log in