Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane


IMPACT FACTOR 2018: 0.732
5-year IMPACT FACTOR: 0.794

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 80, Issue 3

Issues

Aquatic locomotion of the terrestrial opossum Didelphis aurita (Didelphimorphia, Didelphidae) using undulatory swimming mode

Maurício E. Graipel
  • Corresponding author
  • Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ricardo T. Santori
  • Núcleo de Pesquisa e Ensino de Ciências, Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro. Rua Dr. Francisco Portela, 1470, Patronato. 24435-000, São Gonçalo, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-07 | DOI: https://doi.org/10.1515/mammalia-2014-0135

Abstract

This note reports the first record of undulatory swimming mode by the black-eared opossum Didelphis aurita. The record was made in a stream running through the Atlantic Rain Forest in Southern Brazil. After the individual was released, it dove into the stream to escape, swimming using undulation of its trunk and tail. In general, terrestrial mammals use similar gaits to walk and swim. The lateral undulation of the trunk and tail observed during the diving of D. aurita was similar to that seen in quadruped diagonal gaits in terrestrial habitats, but swimming without use of fore and hind limbs is a behavior unique to aquatic locomotion, increasing the locomotor repertoire of this species.

Keywords: aquatic habits; bilateral undulation; marsupial; neotropical mammals; swimming behavior

References

  • Cunha, A.A. and M.V. Vieira. 2002. Support diameter, incline, and vertical movements of four didelphid marsupials in the Atlantic forest of Brazil. J. Zool. 258: 419–426.Google Scholar

  • Delciellos, A.C. and M.V. Vieira. 2007. Stride lengths and frequencies of arboreal walking in seven species of didelphid marsupials. Acta Theriol. 52: 101–111.Web of ScienceGoogle Scholar

  • Doutt, J.K. 1954. The swimming of the opossum, Didelphis marsupialis virginiana. J. Mammal. 35: 581–583.Google Scholar

  • Fish, F.E. 1992. Aquatic locomotion. In: (T.E. Tomasi and T.H. Horton, eds.) Mammalian energetics: interdisciplinary views of metabolism and reproduction. Cornell University Press, Ithaca, NY. pp. 34–63.Google Scholar

  • Fish, F.E. 1993a. Influence of hydrodynamic-design and propulsive mode on mammalian swimming energetics. Aust. J. Zool. 42: 79–101.Google Scholar

  • Fish, F.E. 1993b. Comparison of swimming between terrestrial and semiaquatic opossums. J. Mammal. 74: 275–284.Google Scholar

  • Fish, F.E. 1994. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J. Mammal. 75: 989–997.Google Scholar

  • Fish, F.E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer. Zool. 36: 628–641.Google Scholar

  • Fish, F.E. 2001. A mechanism for evolutionary transition in swimming mode by mammals. In: (J.M. Mazin and V. de Buffrénil, eds.) Secondary adaptation of tetrapods to life in water. Verlag Dr. Friedrich Pfeil, Munich. pp. 261–287.Google Scholar

  • Graipel, M.E., J.J. Cherem, E.L.A. Monteiro-Filho and L. Glock. 2006. Dinâmica populacional de marsupiais e roedores no Parque Municipal da Lagoa do Peri, Ilha de Santa Catarina, sul do Brasil. Mastozool. Neotrop. 13: 31–49.Google Scholar

  • Hertel, H. 1966. Structure, form, movement. Reinhold, New York. pp 251.Google Scholar

  • Hickman, G.C. and C. Machiné. 1986. Swimming behaviour in six species of African rodents (Criscetidae, Muridae). Acta Theriol. 31: 449–466.Google Scholar

  • Kimble, D.P. 1997. Didelphid behavior. Neurosc. Behav. R. 21: 361–369.Google Scholar

  • Lang, T.G. and D.A. Daybell. 1963. Porpoise performance tests in a seawater tank. NOTs Technical Publication 3063. Naval Ordnance Test Station, China Lake, CA. NAVWEPS Report 8060.Google Scholar

  • McManus, J.J. 1970. Behavior of captive opossums, Didelphis marsupialis virginiana. Am. Midland Nat. 84: 114–169.Google Scholar

  • Monteiro-Filho, E.L.A. and V.S. Dias. 1990. Observações sobre a biologia de Lutreolina crassicaudata (Mammalia: marsupialia). Rev. Bras. Biol. 50: 393–399.Google Scholar

  • Moore, J.C. 1955. Opussum taking refuge under water. J. Mammal. 36: 559.Google Scholar

  • Reynolds, P.S. 1993. Size, shape and surface area of beaver, Castor canadensis, a semiaquatic mammal. Can. J. Zool. 71: 876–882.Google Scholar

  • Santori, R.T., O. Rocha-Barbosa, M.V. Vieira, J.A. Magnan-Neto and M.F. Loguercio. 2005. Locomotion in aquatic, terrestrial, and arboreal habitat of thick-tailed opossum, Lutreolina crassicaudata (Desmarest, 1804). J. Mammal. 86: 902–908.Google Scholar

  • Santori, R.T., M.V. Vieira, O. Rocha-Barbosa, J.A. Magnan-Neto and N. Gobbi. 2008. Water absorption by the fur and swimming behavior of semiaquatic and terrestrial oryzomine rodents. J. Mammal. 89: 1152–1161.Web of ScienceGoogle Scholar

  • Santori, R.T., A.C. Delciellos, M.V. Vieira, N. Gobbi, M.F.C. Loguercio and O. Rocha-Barbosa. 2014. Swimming performance in semiaquatic and terrestrial Oryzomyine rodents. Mamm. Biol. 79: 189–194.Web of ScienceGoogle Scholar

  • Thompson, S.D. 1988. Thermoregulation in the water opossum (Chironectes minimus): an exception that “proves” a rule. Physiol. Zool. 61: 450–460.Google Scholar

  • Vieira, M.V. and A.C. Delciellos. 2012. Locomoção, morfologia e uso de habitat em marsupiais neotropicais: uma abordagem ecomorfológica. In: (N.C. Cáceres ed.) Os marsupiais do Brasil: biologia, Ecologia e Conservação. 2nd ed. Editora UFMS. Campo Grande, MS. pp. 363–381.Google Scholar

  • Walker Jr., W.F. and K.F. Liem. 1994. Functional anatomy of the vertebrates: an evolutionary perspective. 2nd ed. Saunders College Publishing. Harcourt Brace College Publishers, London. pp. 703.Google Scholar

  • Wilber, C.G. and G.H. Weidenbacher. 1961. Swimming capacity of some wild mammals. J. Mammal. 42: 428–429.Google Scholar

  • Williams, T.M. 1983. Locomotion in the North American mink, a semi-aquatic mammal. 1. Swimming energetics and body drag. J. Exp. Biol. 103: 155–168.Google Scholar

About the article

Corresponding author: Maurício E. Graipel, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil, e-mail:


Received: 2014-09-11

Accepted: 2015-03-31

Published Online: 2015-05-07

Published in Print: 2016-05-01


Citation Information: Mammalia, Volume 80, Issue 3, Pages 321–323, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2014-0135.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in