Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane


IMPACT FACTOR 2018: 0.732
5-year IMPACT FACTOR: 0.794

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 80, Issue 3

Issues

Diet of brown hare (Lepus europaeus) and food availability in High Andean mountains (Mendoza, Argentina)

Silvia Puig
  • Corresponding author
  • Grupo Ecología y Manejo de Vertebrados Silvestres (GEMAVER), Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA, CONICET), CC. 507, 5500 Mendoza, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María I. Rosi
  • Grupo Ecología y Manejo de Vertebrados Silvestres (GEMAVER), Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA, CONICET), CC. 507, 5500 Mendoza, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Videla
  • Grupo Ecología y Manejo de Vertebrados Silvestres (GEMAVER), Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA, CONICET), CC. 507, 5500 Mendoza, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Méndez
  • Grupo Botánica y Fitosociología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA, CONICET), CC. 507, 5500 Mendoza, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-07 | DOI: https://doi.org/10.1515/mammalia-2014-0142

Abstract

Diet selection by Lepus europaeus was studied in high-altitude mountain environments with severe weather, presence of wetlands, and no agricultural activities. Diet was assessed using fecal microhistological analysis, and food availability by point-quadrat transects in four habitats, two of them with wetlands. Significant differences were determined with Kruskal-Wallis ANOVA, similarities by Renkonen index, and feeding selection by χ2-test and Bailey’s confidence interval. The diet included 63% of all species present. Shrubs dominated the diet. Food use was opportunistic in habitats without wetlands, where grasses and shrubs were more available. Plant cover and availability of grass-like plants were higher in wetland habitats, where shrubs and forbs were preferred and grass-like plants were avoided. Similarity between diet and food availability was higher on dry soils, dominated by grasses and shrubs, than in wetland microhabitats with higher plant cover, diversity, and percentage of grass-like plants. Dietary generalism was confirmed, especially when excluding wetland vegetation. Hard Juncaceae cushions accounted for the pronounced selectivity in habitats with wetlands. Dry soils, where shrub patches provided good food and shelter, appear as major feeding microhabitats for L. europaeus. Spatial heterogeneity protection, at landscape and microhabitat scales, is relevant to the brown hare conservation in High Andean environments.

Keywords: arid environments; dietary selection; high altitudes; Leporidae

References

  • Abraham, E. 2000. Geomorfología de la provincia de Mendoza. Caracterización ambiental y atlas básico. In: (E. Abraham and F. Rodríguez Martínez, eds.) Argentina, recursos y problemas ambientales de la zona árida. Junta de Andalucía, Gobierno y Universidades de la Región Andina Argentina, Buenos Aires. pp. 29–48.Google Scholar

  • Alzérreca, H., J. Laura, F. Loza, D. Luna and J. Ortega. 2006. Importance of carrying capacity in sustainable management of key High-Andean puna rangelands (Bofedales) in Ulla Ulla, Bolivia. In: (E.M. Spehn, M. Liberman and C. Korner, eds.) Land use change and mountain biodiversity. Taylor & Francis, Boca Raton, FL. pp. 153–166.Google Scholar

  • Angermann, R., J.E.C. Flux, J.A. Chapman and A.T. Smith. 1990. Lagomorph classification. In: (J.A. Chapman and J.E.C. Flux, eds.) Rabbits, hares and pikas: status survey and conservation action plan. IUCN/SSC Lagomorph Specialist Group, Oxford. pp. 7–13.Google Scholar

  • Arriagada, A.M., J.L. Arriagada, L.A. Baessolo and C.G. Suazo. 2011. Summer diet of black-chested buzzard-eagle (Geranoaetus melanoleucus) in Aysen District, Chilean Patagonia. Ecotrópicos 2: 164–171.Google Scholar

  • Baumgartner, L.L. and A.C. Martin. 1939. Plant histology as an aid in squirrel food-habit studies. J. Wildl. Manage. 3: 266–268.Google Scholar

  • Bonino, N.A. 2007. Estrategia adaptativa de dos especies de lagomorfos introducidos en la Patagonia argentina, con especial referencia a sus hábitos alimentarios. Tesis Doctoral, Univ. Sevilla. pp. 182.Google Scholar

  • Bonino, N., D. Cossíos and J. Menegheti. 2010. Dispersal of the European hare, Lepus europaeus in South America. Folia Zool. 59: 9–15.Google Scholar

  • Brown, A., U. Martinez Ortiz, M. Acerbi and J. Corcuera. 2006. La situación ambiental Argentina 2005. FVSA, Buenos Aires. pp. 587.Google Scholar

  • Cabrera, A.L. and A. Willink. 1980. Biogeografía de América Latina, 2nd ed. Biological Series of the Organization of American States, Washington. pp. 122.Google Scholar

  • Cavieres, L.A., A. Peñaloza and M.K. Arroyo. 2000. Altitudinal vegetation belts in the High-Andes of central Chile (33°S). Rev. Chil. Hist. Nat. 73: 331–344.Google Scholar

  • Chapman, J.A. and J.E.C. Flux. 1990. Introduction and overview of the lagomorphs. In: (J.A. Chapman and J.E.C. Flux, eds.) Rabbits, hares and pikas: status survey and conservation action plan. IUCN/SSC Lagomorph Specialist Group, Oxford. pp. 1–6.Google Scholar

  • Cherry, S. 1996. A comparison of confidence interval methods for habitat use availability. J. Wildl. Manage. 60: 653–658.Google Scholar

  • Colwell, R.K. and D.J. Futuyma. 1971. On the measurement of niche breadth and overlap. Ecology 52: 567–576.CrossrefGoogle Scholar

  • Contreras, J.P., E. Rodríguez, A. Santoro and H. Torres. 2002. Plan de acción para la conservación y uso sustentable de humedales altoandinos. CONAF and RAMSAR. pp. 22.Google Scholar

  • Daget, P. and J. Poissonet. 1971. Une méthode d’analyse phytologique des prairies. Critéres d’application. Ann. Agron. 22: 5–41.Google Scholar

  • Dinerstein, E., D.M. Olson, D.J. Graham, A.L. Webster, S.A. Primm, M.P. Bookbinder and G. Ledec. 1995. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Bank, Washington DC. pp. 129.Google Scholar

  • Duci, J.L. 1949. Methods for the determination of food habits by plant microtechniques and histology and their application to cotton tail rabbit food habits. J. Wildl. Manage. 13: 295–298.Google Scholar

  • Flux, J.E.C. and R. Angermann. 1990. The hares and jackrabbits. In: (J.A. Chapman and J.E.C. Flux, eds.) Rabbits, hares and pikas: status survey and conservation action plan. IUCN/SSC Lagomorph Specialist Group, Oxford. pp. 61–95.Google Scholar

  • Franklin, W.L., W.E. Johnson, J.A. Iriarte and R.J. Sarno. 1999. Ecology of the Patagonia mountain lion, Felis concolor patagonica, in southern Chile. Biol. Conserv. 90: 33–40.Google Scholar

  • Green, K., N.E. Davis, W.A. Robinson, J. McAuliffe and R.B. Good. 2013. Diet selection by European hares (Lepus europaeus) in the alpine zone of the Snowy Mountains, Australia. Eur. J. Wildl. Res. 59: 693–703.Web of ScienceGoogle Scholar

  • Holechek, J.L. 1982. Sample preparation techniques for microhistological analysis. J. Range Manage. 35: 267–268.Google Scholar

  • Holechek, J. and B. Gross. 1982. Evaluation of different calculation procedures for microhistological analysis. J. Range Manage. 35: 721–723.Google Scholar

  • Holechek, J.L., M. Vavra and R.D. Pieper. 1982. Botanical composition determination of range herbivore diets: a review. J. Range Manage. 35: 309–315.Google Scholar

  • Hurlbert, S. 1978. The measurement of niche overlap and some relatives. Ecology 59: 67–77.Google Scholar

  • Kufner, M.B., L. Sepúlveda, G. Gavier, L. Madoery and L. Giraudo. 2008. Is the native deer Mazama gouazoubira threatened by competition for food with the exotic hare Lepus europaeus in the degraded Chaco in Córdoba, Argentina? J. Arid Environ. 72: 2159–2167.Google Scholar

  • López-Cortés, F., A. Cortés, E. Miranda and J.R. Rau. 2007. Dietas de Abrothrix andinus, Phyllotis xanthopygus (Rodentia) y Lepus europaeus (Lagomorpha) en un ambiente altoandino de Chile. Rev. Chil. Hist. Nat. 80: 3–12.Google Scholar

  • Mónaco, G., L. Arias, E.A. Orellano and A. Begaríe. 2005. Carta de situación de Reserva Laguna del Diamante: Aspectos Generales, Naturales y Culturales. Technical Report. Secretaría de Medio Ambiente, Gobierno de Mendoza, Argentina. pp. 97.Google Scholar

  • Montserrat, A., M. Funes and A. Novaro. 2005. Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Rev. Chil. Hist. Nat. 78: 425–439.Google Scholar

  • Moreno, C.E. 2001. Métodos para medir la biodiversidad. M&T Manuales y Tesis SEA, vol. 1. Zaragoza. pp. 84.Google Scholar

  • Norte, F. 2000. Mapa climático de Mendoza. In: (E. Abraham and F. Rodríguez Martínez, eds.) Argentina, recursos y problemas ambientales de la zona árida. Junta de Andalucía, Gobierno y Universidades de la Región Andina Argentina, Buenos Aires. pp. 25–27.Google Scholar

  • Novara, L.J. 2009. Juncaceae: Familia de los juncos o junquillos. In: (R. Kiesling, ed.) Flora de San Juan, Vol. IV, Fundación Universidad Nacional de San Juan, San Juan. pp. 377–391.Google Scholar

  • Pelliza-Sbriller, A., P. Willems, V. Nakamatsu, A. Manero and R. Solmo. 1997. Atlas dietario de herbívoros patagónicos. Prodesar, INTA, GTZ, Bariloche.Google Scholar

  • Puig, S., F. Videla, M.I. Cona and S.A. Monge. 2007. Diet of the brown hare (Lepus europaeus) and food availability in northern Patagonia (Mendoza, Argentina). Mamm. Biol. 72: 240–250.Google Scholar

  • Puig, S., M.I. Rosi, F. Videla and E. Mendez. 2011. Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mamm. Biol. 76: 727–734.Web of ScienceGoogle Scholar

  • Puig, S., M.I. Cona, F. Videla and E. Mendez. 2014. Dietary overlap of coexisting exotic brown hare (Lepus europaeus) and endemic mara (Dolichotis patagonum) in Northern Patagonia (Mendoza, Argentina). Mammalia 78: 315–326.Web of ScienceGoogle Scholar

  • Reus, M.L., B. Peco, C. de los Ríos, S.M. Giannoni and C.M. Campos. 2012. Trophic interactions between two medium-sized mammals: the case of the native Dolichotis patagonum and the exotic Lepus europaeus in a hyper-arid ecosystem. Acta Theriol. 58: 205–214.Google Scholar

  • Rödel, H.G., W. Völkl and H. Kilias. 2004. Winter browsing of brown hares: evidence for diet breadth expansion. Mamm. Biol. 69: 410–419.Google Scholar

  • Roig, C. and F. Roig. 2004. Consideraciones generales. In: (D.E. Blanco and V.M. Balze, eds.) Los turbales de la Patagonia. Bases para su inventario y la conservación de su biodiversidad. Wetlands International. Bs. As., Argentina. pp. 5–21.Google Scholar

  • Roig, F.A., E. Martínez Carretero and E. Méndez. 2000. Vegetación de la provincia de Mendoza. Caracterización ambiental y atlas básico. Buenos Aires. In: (E. Abraham and F. Rodríguez Martínez, eds.) Argentina, recursos y problemas ambientales de la zona árida. Junta de Andalucía, Gobierno y Universidades de la Región Andina Argentina, Buenos Aires. pp. 63–64.Google Scholar

  • Siegel, S. and N.J. Castellan. 1988. Nonparametric statistics for the behavioral sciences, 2nd ed. McGraw-Hill, New York. pp. 399.Google Scholar

  • Smith, A.D. and L.J. Shandruk. 1979. Comparison of fecal, rumen and utilization methods for ascertaining pronghorn diets. J. Range Manage. 32: 275–279.Google Scholar

  • Smith, R.K., N.V. Jennings and S. Harris. 2005. A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Rev. 35: 1–24.Google Scholar

  • Squeo, F.A., B.G. Warner, R. Aravena and D. Espinosa. 2006a. Bofedales: high altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79: 245–255.Google Scholar

  • Squeo, F.A., E. Ibacache, B. Warner, D. Espinoza, R. Aravena and J.R. Gutiérrez. 2006b. Productividad y diversidad florística de la Vega Tambo, Cordillera de Doña Ana. In: (J. Cepeda-Pizarro, ed.) Geoecología de los Andes desérticos. La alta montaña del valle de Elqui. pp. 323–351.Google Scholar

  • Sruoga, P., E.J. Llambías, L. Fauqué, D. Schonwandt and D.G. Repol. 2005. Volcanological and geochemical evolution of the Diamante Caldera-Maipo volcano complex in the southern Andes of Argentina (34°10′S). J. S. Am. Earth Sci. 19: 399–414.Google Scholar

  • van der Wal, R., H. van Wijnen, S. van Wieren, O. Beucher and D. Bos. 2000. On facilitation between herbivores: how brent geese profit from brown hares. Ecology 81: 969–980.Google Scholar

  • Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall Inc., NJ. pp. 718.Google Scholar

  • Zweifel-Schielly, B., M. Kreuzer, K.C. Ewald and W. Suter. 2009. Habitat selection by an Alpine ungulate: the significance of forage characteristics varies with scale and season. Ecography 32: 103–113.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-09-26

Accepted: 2015-04-01

Published Online: 2015-05-07

Published in Print: 2016-05-01


Citation Information: Mammalia, Volume 80, Issue 3, Pages 293–303, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2014-0142.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Silvia Puig, María I. Rosi, Fernando Videla, and Eduardo Mendez
Mammal Research, 2017, Volume 62, Number 1, Page 75

Comments (0)

Please log in or register to comment.
Log in