Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane


IMPACT FACTOR 2018: 0.732
5-year IMPACT FACTOR: 0.794

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 80, Issue 3

Issues

Knowledge, management and optimization: the use of live traps in control of non-native squirrels

Maria Vittoria Mazzamuto
  • Corresponding author
  • Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mattia Panzeri
  • Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucas Wauters
  • Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Damiano Preatoni
  • Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adriano Martinoli
  • Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-09 | DOI: https://doi.org/10.1515/mammalia-2015-0006

Abstract

This study identifies techniques to maximize trap efficiency and minimize trapping effort when using live traps to capture the invasive alien Pallas’s squirrel (Callosciurus erythraeus), which was introduced in Italy near the Swiss borders. We explored the effects of time of day, season, number of checks in the capture session and type of live trap (single or multi-capture). Moreover, the vegetation around traps (characteristics of the tree supporting the trap, vegetation growth, vegetation cover, vegetation richness and similarity index) was tested. Squirrels were caught more frequently in the morning, but trapping success was not affected by the type of trap used. Squirrel trap response varied significantly in relation to the season, and a higher trapping success in the first days of the trapping session suggests the importance of prebaiting. We reject the hypothesis that vegetation around traps affected the capture success of Pallas’s squirrel in deciduous forests. Thus, recommendations to improve the trapping efficiency of this species are to (1) use single capture live traps with at least one week of prebaiting, (2) increase the capture effort in winter and (3) set traps where access is easy and where there are signs of high activity of individuals of the alien species.

This article offers supplementary material which is provided at the end of the article.

Keywords: capture success; invasive species; live trap; Pallas’s squirrel

References

  • Andelt, W.F. and T.P. Woolley. 1996. Responses of urban mammals to odor attractants and a bait-dispensing device. Wildl. Soc. Bull. 24: 111–118.Google Scholar

  • Babińska, J. and E. Bock. 1969. The effect of prebaiting on captures of rodents. Acta Theriol. 14: 267–271.Google Scholar

  • Banks, P.B. 1998. Responses of Australian bush rats, Rattus fuscipes, to the odor of introduced Vulpes vulpes. J. Mammal. 79: 1260–1264.Google Scholar

  • Bertolino, S. 2008. Introduction of the American grey squirrel (Sciurus carolinensis) in Europe: a case study in biological invasion. Curr. Sci. 95: 903–906.Google Scholar

  • Bertolino, S. 2009. Animal trade and non-indigenous species introduction: the world-wide spread of squirrels. Divers. Distrib. 15: 701–708.Google Scholar

  • Bertolino, S. and P.W.W. Lurz. 2013. Callosciurus squirrels: worldwide introductions, ecological impacts and recommendations to prevent the establishment of new invasive populations. Mammal. Rev. 43: 22–33.Google Scholar

  • Bertolino, S., N. Cordero di Montezemolo, D.G. Preatoni and A. Martinoli. 2014. A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol. Invasions. 16: 53–62.Google Scholar

  • Burnham, K.P. and D.R. Anderson. 2004. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods. Res. 33: 261–304.Google Scholar

  • Cassini, G.H. and M.L. Guichón. 2009. Variaciones morfológicas y diagnosis de la ardilla de vientre rojo, Callosciurus erythraeus (Pallas, 1779), en Argentina. Mastozool. Neotropical. 16: 39–47.Google Scholar

  • Chitty, D. and D.A. Kempson. 1949. Prebaiting small mammals and a new design of live trap. Ecology 30: 536–542.Google Scholar

  • Clavero, M. and E. Garciaberthou. 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20: 110.Google Scholar

  • Close, B., K. Banister, V. Baumans, E.V. Bernoth, N. Bromage, J. Bunyan, W. Erhardt, P. Flecknell, N. Gregory and H. Hackbarth. 1996. Recommendations for euthanasia of experimental animals: part 1. Lab. Anim. 30: 293–316.Google Scholar

  • Close, B., K. Banister, V. Baumans, E.V. Bernoth, N. Bromage, J. Bunyan, W. Erhardt, P. Flecknell, N. Gregory and H. Hackbarth. 1997. Recommendations for euthanasia of experimental animals: part 2. Lab. Anim. 31: 1–32.Google Scholar

  • Edalgo, J. and J.T. Anderson. 2007. Effects of prebaiting on small mammal trapping success in a Morrow’s honeysuckle-dominated area. J. Wildl. Manag. 71: 246–250.Google Scholar

  • European Environment Agency. 2012. The impacts of invasive alien species in Europe. Technical report No 16/2012. European Enviroment Agency, Copenhagen. pp. 114.Google Scholar

  • Genovesi, P. 2005. Eradications of invasive alien species in Europe: a review. In: (L. Capdevila-Argüelles and B. Zilletti, eds.) Issues in bioinvasion science. Springer, Dordrect. pp. 127–133.Google Scholar

  • Genovesi, P., C. Carboneras, M. Vilà and P. Walton. 2014. EU adopts innovative legislation on invasive species: a step towards a global response to biological invasions? Biol. Invasions 17: 1307–1311.Google Scholar

  • Grodziński, W., Z. Pucek and L. Ryszkowski. 1966. Estimation of rodent numbers by means of prebaiting and intensive removal. Acta Theriol. (Warsz) XI: 297–314.Google Scholar

  • Guichón, M.L. and P.C. Doncaster. 2008. Invasion dynamics of an introduced squirrel in Argentina. Ecography 31: 211–220.Google Scholar

  • Gurnell, J. 1980. The effects of prebaiting live traps on catching woodland rodents. Acta Theriol. (Warsz) 25: 255–264.Google Scholar

  • Gurnell, J. 1996. The Effects of food availability and winter weather on the dynamics of a grey squirrel population in Southern England. J. Appl. Ecol. 33: 325–328.Google Scholar

  • Gurnell, J. and J. Little. 1992. The influence of trap residual odour on catching woodland rodents. Anim. Behav. 43: 623–632.Google Scholar

  • Gurnell, J., L.A. Wauters, P.W.W. Lurz and G. Tosi. 2004. Alien species and interspecific competition: effects of introduced eastern grey squirrels on red squirrel population dynamics. J. Anim. Ecol. 73: 26–35.Google Scholar

  • Hori, M., M. Yamada and N. Tsunoda. 2006. Line census and gnawing damage of introduced Formosan squirrels (Callosciurus erythraeus taiwanensis) in urban forests of Kamakura, Kanagawa, Japan. In: (F. Koike, M.N. Clout, M. Kawamichi, M. De Poorter and K. Iwatsuki, eds.) Assessment and control of Biological Invasion Risks. Shoukadoh Book Sellers, Kyoto. pp. 204–209.Google Scholar

  • Kettunen, M., P. Genovesi, S. Gollasch, S. Pagad, U. Starfinger, P. ten Brink and C. Shine. 2009. Technical support to EU strategy on invasive alien species (IAS). Institute for European Environmental Policy (IEEP), Brussels. pp. 44.Google Scholar

  • Kozlowski, T.T. 2012. Seed germination, ontogeny, and shoot growth. Elsevier, Amsterdam. pp. 443.Google Scholar

  • Leary, S., W. Underwood, R. Anthony, S. Cartner, D. Corey, T. Grandin, C. Greenacre, S. Gwaltney-Brant, M.A. McCrackin, R. Meyer, D. Miller, J. Shearer and R. Yanong. 2013. AVMA guidelines for the euthanasia of animals, 2013 ed. American Veterinary Medical Association, Schaumburg, IL. pp. 102.Google Scholar

  • Martinoli, A., S. Bertolino, D.G. Preatoni, A. Balduzzi, A. Marsan, P. Genovesi, G. Tosi and L. Wauters. 2010. Headcount 2010: the multiplication of the grey squirrel populations introduced to Italy. Hystrix. Ital. J. Mammal. 21: 127–136.Google Scholar

  • Mayle, B., M. Ferryman and P. Harry. 2007. Controlling grey squirrel damage to woodlands. Forestry Authority, UK. pp. 16.Google Scholar

  • Miyamoto, A., N. Tamura, K. Sugimura and F. Yamada. 2004. Predicting habitat distribution of the alien Formosan squirrel using logistic regression model. Glob. Environ. Res. Engl. Ed. 8: 13–22.Google Scholar

  • Oshida, T., M. Yasuda, H. Endo, N.A. Hussein and R. Masuda. 2001. Molecular phylogeny of five squirrel species of the genus Callosciurus (Mammalia, Rodentia) inferred from cytochrome b gene sequences. Mammalia 65: 473–482.Google Scholar

  • Palmer, R.R. and J.L. Koprowski. 2014. Feeding behavior and activity patterns of Amazon red squirrels. Mammalia 78: 303–313.Google Scholar

  • Pearson, D.E. and L.F. Ruggiero. 2003. Transect versus grid trapping arrangements for sampling small-mammal communities. Wildl. Soc. Bull. 31: 454–459.Google Scholar

  • Perry, H.R. Jr, G.B. Pardue, F.S. Jr Barkalow and R.J. Monroe. 1977. Factors affecting trap responses of the gray squirrel. J. Wildl. Manag. 41: 135–143.Google Scholar

  • R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar

  • Stickel, L.F. 1948. The trap line as a measure of small mammal populations. J. Wildl. Manag. 12: 153–161.Google Scholar

  • Stuyck, J., K. Baert, P. Breyne and T. Adriaens. 2009. Invasion history and control of a Pallas squirrel Callosciurus erythraeus population in Dadizele, Belgium. Proceedings of the Science Facing Aliens conference. Brussels, May 11, 2009. Biodiversity Platform, Brussels. pp. 46.Google Scholar

  • Tamura, N. 1989. Snake-directed mobbing by the Formosan squirrel Callosciurus erythraeus thaiwanensis. Behav. Ecol. Sociobiol. 24: 175–180.Google Scholar

  • Tamura, N., M. Nakane, S. Satuo and F. Hayashi. 1987. Home range size of the formosan squirrel Callosciurus eryhtareus thaiwanensis, estimated by radio tracking. J. Mammal. Soc. Jpn. 12: 69–72.Google Scholar

  • Tamura, N., F. Hayashi and K. Miyashita. 1988. Dominance hierarchy and mating behavior of the Formosan squirrel, Callosciurus erythraeus thaiwanensis. J. Mammal. 69: 320.Google Scholar

  • Tobin, M.E., R.T. Sugihara and R.M. Engeman. 1994. Effects of initial rat captures on subsequent capture success of traps. Paper 62. Proceedings of the Sixteenth Vertebrate Pest Conference. Available at: http://digitalcommons.unl.edu/vpc16/62.

  • Tosi, G. and A. Zilio. 2002. Conoscenza delle risorse ambientali della provincia di Varese. Settore politiche per l’agricoltura e gestione faunistica, Provincia di Varese.Google Scholar

  • Trippi, V.S. 1963a. Studies on ontogeny and senility in plants. I. Changes of growth vigor during the juvenile and adult phases of ontogeny in Tilia parviflora, and growth in juvenile and adult zones of Tilia, Ilex aquifolium and Robinia pseudoacacia. Phyton. Int. J. Exp. Bot. 20: 137–145.Google Scholar

  • Trippi, V.S. 1963b. Studies on ontogeny and senility in plants. III. Changes in the proliferative capacity in vitro during ontogeny in Robinia pseudoacacia and Castanea vulgaris and in adult and juvenile clones of R. pseudoacacia. Phyton. Int. J. Exp. Bot. 20: 153–159.Google Scholar

  • Vander Wall, S.B., C.J. Downs, M.S. Enders and B.A. Waitman. 2008. Do yellow-pine chipmunks prefer to recover their own caches. West North Am. Nat. 68: 319–323.Google Scholar

  • Veitch, C.R. and M.N. Clout. 2002. Turning the tide: the eradication of invasive species. Occasional Paper of the IUCN Species Survival Commission No. 27. Proceedings of the International Conference on Eradication of Island Invasives. International Union for Conservation of Nature, Gland, Switzerland. pp. 422.Google Scholar

  • Vernes, K. 2004. Breeding biology and seasonal capture success of northern flying Squirrels (Glaucomys sabrinus) and Red Squirrels (Tamiasciurus hudsonicus) in Southern New Brunswick. Northeast Nat. 11: 123–136.Google Scholar

  • Wauters, L.A. and P. Casale. 1996. Long-term scatterhoarding by Eurasian red squirrels (Sciurus vulgaris). J. Zool. 238: 195–207.Google Scholar

  • Wauters, L.A. and A.A. Dhondt. 1987. Activity budget and foraging behaviour of the red squirrel (Sciurus vulgaris Linnaeus, 1758) in a coniferous habitat. Z. Für Säugetierkd 52: 341–353.Google Scholar

  • Wauters, L.A. and A.A. Dhondt. 1989. Body weight, longevity and reproductive success in red squirrels (Sciurus vulgaris). J. Anim. Ecol. 58: 637–651.Google Scholar

  • Wauters, L.A., J. Gurnell, A. Martinoli and G. Tosi. 2002. Interspecific competition between native Eurasian red squirrels and alien grey squirrels: does resource partitioning occur? Behav. Ecol. Sociobiol. 52: 332–341.Google Scholar

  • Wauters, L.A., M. Vermeulen, S. Van Dongen, S. Bertolino, A. Molinari, G. Tosi and E. Matthysen. 2007. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30: 51–65.Google Scholar

  • Weihong, J., C.R. Veitch and J.L. Craig. 1999. An evaluation of the efficiency of rodent trapping methods: the effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 23: 45–51.Google Scholar

  • Zong, C., S. Mei, F. Santicchia, L. Wauters, D. Preatoni and A. Martinoli. 2014. Habitat effects on hoarding plasticity in the Eurasian red squirrel (Sciurus vulgaris). Hystrix. Ital. J. Mammal. 25: 14–17.Google Scholar

About the article

Received: 2015-01-13

Accepted: 2015-04-01

Published Online: 2015-05-09

Published in Print: 2016-05-01


Citation Information: Mammalia, Volume 80, Issue 3, Pages 305–311, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2015-0006.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. V. Mazzamuto, M. Morandini, M. Panzeri, L. A. Wauters, D. G. Preatoni, and A. Martinoli
Biological Invasions, 2017, Volume 19, Number 6, Page 1863
[2]
Maria Vittoria Mazzamuto, Francesco Bisi, Lucas A. Wauters, Damiano G. Preatoni, and Adriano Martinoli
Biological Invasions, 2017, Volume 19, Number 2, Page 723

Comments (0)

Please log in or register to comment.
Log in