Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2016: 0.805
5-year IMPACT FACTOR: 1.000

CiteScore 2016: 0.89

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.711

See all formats and pricing
More options …
Volume 81, Issue 3


Geographic morphometric and environmental differentiation of the water opossum, genus Chironectes Illiger, 1811 (Didelphimorphia: Didelphidae)

Rui Cerqueira
  • Laboratório de Vertebrados, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CP 68020, Rio de Janeiro, 21941-590, RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcelo M. Weber
  • Corresponding author
  • Laboratório de Vertebrados, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CP 68020, Rio de Janeiro, 21941-590, RJ, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-27 | DOI: https://doi.org/10.1515/mammalia-2015-0109


We studied phenotypic variation in water opossum Chironectes minimus through morphological variation in size and shape of 16 cranial characters among six groups of populations of Chironectes defined by a transect analysis named according their main distributions: Central America, Venezuela/Colombia, Guianas, Belem, Bolivia/Peru, and Atlantic Forest. We also studied environmental variation among the groups and the influence of temperature seasonality and minimum temperature of coldest month on the body size of C. minimus. Morphometric differences in both size and shape were sharp between two major groups: Atlantic Forest and Central America+Venezuela/Colombia+Belem. The same pattern of differentiation was also observed in the environmental variables each group experiences. We also found a negative relationship between body size and temperature seasonality which showed that C. minimus follows a converse Bergmann’s rule cline. Our results on morphometric and environmental space suggest that specimens from the Atlantic Forest are different from specimens from Central America+Venezuela/Colombia+Belem both in size and shape and environmentally. We suggest that these major groups may comprehend different clades but a proper taxonomic assessment is needed to confirm our hypothesis.

This article offers supplementary material which is provided at the end of the article.

Keywords: Bergmann’s rule; Chironectes minimus; environmental space; morphometric space; skull morphology


  • Acosta, L. and H. Azurduy. 2009. Nuevos registros y apuntes sobre la carachupa de agua Chironectes minimus, en los valles Cruceños (Bolivia). Kempffiana 5: 83–89.Google Scholar

  • Ardente, N., D. Gettinger, R. Fonseca, H.G. Bergallo, and F. Martins-Hatano. 2013. Mammalia, Didelphimorphia, Didelphidae, Glironia venusta Thomas, 1912 and Chironectes minimus (Zimmermann, 1780): distribution extension for eastern Amazonia. Check List 9: 1104–1007.Google Scholar

  • Ashton, K.G. and C.R. Feldman. 2003. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reserve it. Evolution 57: 1151–1163.CrossrefGoogle Scholar

  • Astúa de Moraes, D. 2010. Cranial sexual dimorphism in New World marsupials and a test of Rensch’s rule in Didelphidae. J. Mammal. 91: 1011–1024.Google Scholar

  • Astúa de Moraes, D., R.T. Santori, R. Finotti, and R. Cerqueira. 2003. Nutritional and fibre contents of laboratory-established diets of Neotropical opossums (Didelphimorphia, Didelphidae). In: (M. Jones, C. Dickman, and M. Archer, eds.) Predators with pouches-The Biology of Carnivorous Marsupials. CSIRO, Melbourne, Australia. pp. 229–237.Google Scholar

  • Bookstein, F.L. 1989. ‘Size and shape’: a comment on semantics. Syst. Zool. 38: 173–180.Google Scholar

  • Bookstein, F.L., B. Chernoff, R.L. Elder, J.M. Humphries Jr., G.R. Smith, and R.E. Strauss. 1985. Morphometrics in evolutionary biology – the geometry of size and shape change, with examples from fishes. Academy of Natural Sciences of Philadelphia, Philadelphia. pp. 277.Google Scholar

  • Brandão, M.V., G.S.T. Garbino, L.P. Godoy, L.A. Silva, and W. Pascoal. 2015. New records of Chironectes minimus (Zimmermann, 1870) (Didelphimorphia, Didelphidae) from central Brazil, with comments on its distribution pattern. Mammalia 79: 363–368.Google Scholar

  • Bressiani, V.B. and M.E. Graipel. 2008. Comparação de métodos para captura da cuícad’água, Chironectes minimus (Zimmerman, 1780) (Mammalia, Didelphidae) no sul do Brasil. Mastozool. Neotrop. 15: 33–39.Google Scholar

  • Brown, J.H. and L. Lomolino. 1998. Biogeography. 2nd. Sunderland (Massachusetts), Sinauer Associate. pp. 691.Google Scholar

  • Cerqueira, R. 1980. A study of Neotropical Didelphis (Mammalia, Polyprotodontia, Didelphidae). Ph.D. dissertation, University of London, London.Google Scholar

  • Cerqueira, R. 1982. South American landscapes and their mammals. In: (M.A. Mares and H.H. Genoways, eds.) Mammalian Biology in South America Volume 6. Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittisburgh. pp. 53–75.Google Scholar

  • Cerqueira, R. and C.J. Tribe. 2008. Genus Didelphis. In: (A.L. Gardner, ed.) Mammals of South America, Volume 1 –Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago. pp. 17–25.Google Scholar

  • Cherry, L.M., S.M. Case, J.G. Kunkel, J.S. Wyles, and A.C. Wilson. 1982. Body-shape metrics and organismal evolution. Evolution 36: 914–933.CrossrefGoogle Scholar

  • Collins, L.R. 1973. Monotremes and marsupials: A reference for zoological institutions. The Smithsonian Institution Press, Washington, D.C. pp. 323.Google Scholar

  • Cuarón, A.D., L. Emmons, K. Helgen, F. Reid, D. Lew, B. Patterson, C. Delgado, and S. Solari. 2008. Chironectes minimus. In: The IUCN Red List of Threatened Species. Version 2015.2. Availabe at: <www.iucnredlist.org>. Accessed on 24 June 2015.

  • De Lazari, P.R., M. Santos-Filho, G.R. Canale, and M.E. Graipel. 2013. Flood-mediated use of habitat by large and midsized mammals in the Brazilian Pantanal. Biota Neotrop. 13: Available at: http://www.biotaneotropica.org.br/v13n2/pt/abstract?article+bn02713022013.

  • Dickey, D.R. 1928. A new marsupial from El Salvador. P. Biol. Soc. Wash. 41: 15–16.Google Scholar

  • Fernandez, F.A.S., M. Galliez, M.S. Leite, T.L. Queiroz, and A.F. Palmeirim. 2015. Natural history of the water opossum Chironectes minimus: a review. Oecol. Aust. 19: 47–62.Google Scholar

  • Galliez, M., M.S. Leite, T.L. Queiroz, and F.A.S. Fernandez. 2009. Ecology of the water opossum Chironectes minimus in Atlantic forest streams of Southeastern Brazil. J. Mammal. 90: 93–103.Google Scholar

  • Gardner, A.L. 1973. The systematic of the genus Didelphis (Marsupialia: Didelphidae) in North and Middle America. Spec. Pub.Mus.Texas Tech Univ. 1: 1–81.Google Scholar

  • Gardner, A.L. 1993. Order didelphimorphia. In: (D.E. Wilson and D.M. Reeder, eds.) Mammal species of the world: a taxonomic and geographic reference. 2nd ed. Smithsonian Institution Press, Washington, D.C. pp. 15–23.Google Scholar

  • Graipel, M.E., M.I.M. Hernández, and C. Salvador. 2014. Evaluation of abundance indexes in open population studies: a comparison in populations of small mammals in southern Brazil. Braz. J. Biol. 74: 553–559.Google Scholar

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.Google Scholar

  • Honaker, J., K. Gary, and M. Blackwell. 2011. Amelia II: A Program for Missing Data. J. Stat. Software 45: 1–47.Google Scholar

  • Humphries, J.M., F.L. Bookstein, B. Chernoff, G.R. Smith, R.L. Elder, and S.G. Poss. 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291–308.Google Scholar

  • Jolicoeur, P. and J.E. Mosimann. 1960. Size and shape variation in the painted turtle. A principal component analysis. Growth 24: 339–354.Google Scholar

  • Jungers, W.L., A.B. Falsetti, and C.E. Wall. 1995. Shape, relative size, and size-adjustments in morphometrics. Yearb. Phys. Anthropol. 38: 137–161.Google Scholar

  • Klecka, W.R. 1980. Discriminat Analysis. Sage Publications, Beverly Hills, California. pp. 71.Google Scholar

  • Legendre, P. and L. Legendre. 2012. Numerical ecology. 3rd ed. Elsevier, Oxford. pp. 990.Google Scholar

  • Leite, M.S., T.L. Queiroz, M. Galliez, P.P.M. Mendonça, and F.A.S. Fernandez. 2013. Activity patterns of the water opossum Chironectes minimus in Atlantic forest rivers of southeastern Brazil. J. Trop. Ecol. 29: 261–264.Google Scholar

  • Lemos, B. and R. Cerqueira. 2002. Morphological differentiation in the white-eared opossum group (Didelphidae: Didelphis). J. Mammal. 83: 354–369.Google Scholar

  • Lemos, B., G. Marroig, and R. Cerqueira. 2001. Evolutionary rates and stabilizing selection in large-bodied opossum skulls (Didelphimorphia: Didelphidae). J. Zool. 255: 181–189.Google Scholar

  • Lleonart, J., J. Salat, and G.J. Torres. 2000. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205: 85–93.Google Scholar

  • Lynch, M.1990. The rate of phenotypic evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136: 727–741.Google Scholar

  • Marshall, L.G. 1978. Chironectes minimus. Mamm. Spec. 109: 1–6.Google Scholar

  • Martinez, P.A., D.A. Marti, W.F. Molina, and C.J. Bidau. 2013. Bergmann’s rule across the Equator: a case study in Cerdocyonthous (Canidae). J. An. Ecol. 82: 997–1008.Google Scholar

  • Monteiro-Filho, E.L.A., M.E. Graipel, and N.C. Cáceres. 2006. História Natural da Cuíca-d’água Chironectes minimus e da cuíca-marrom Lutreolina crassicaudata. In: (N.C. Cáceres and E.L.A. Monteiro-Filho, eds.) Os Marsupiais do Brasil – biologia, ecologia e conservação. Editora Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil. pp. 287–295.Google Scholar

  • Mosimann, J.E. 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65: 930–945.Google Scholar

  • Nogueira, J.C., A.C.S. Castro, E.V.C. Câmara, and B.G.O. Câmara.2004. Morphology of the male genital system of Chironectes minimus and comparison to other didelphid marsupials. J. Mammal. 85: 834–841.Google Scholar

  • Palmeirim, A.F., M.S. Leite, M. Santos-Reis, and F.A.S. Fernandez. 2014. Habitat selection for resting sites by the water opossum (Chironectes minimus) in the Brazilian Atlantic forest. Stud. Neotrop. Fauna Environ. 49: 231–238.Google Scholar

  • Patton, J.L. and P.V. Brylski. 1987. Pocket gophers in alfalfa fields: causes and consequences of habitat-related body size variation. Am. Nat. 130: 493–506.Google Scholar

  • Pessôa, L.M. and R.E. Strauss. 1999. Cranial size and shape variation, pelage and bacular morphology, and subspecific differentiation in spiny rats, Proechimys albispinus (Is. Geoffroy, 1838), from northeastern Brazil. Bonn. Zool. Beitr. 48: 231–243.Google Scholar

  • R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Rensch, B. 1960. Evolution above the species level. Columbia University Press, New York. pp. 419.Google Scholar

  • Ribeiro, M.C., J.P. Metzger, A.C. Martensen, F.J. Ponzoni, and M.M. Hirota. 2009. The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol.Conserv. 142: 1141–1153.Google Scholar

  • Schutze, M.K. and A.R. Clarke. 2008. Converse Bergmann cline in a Eucalyptus herbivore, Paropsis atomaria Olivier (Coleoptera: Chrysomelidae): phenotypic plasticity or local adaptation? Gl. Ecol. Biogeogr. 17: 424–431.Google Scholar

  • Sprent, P. 1972. The mathematics of size and shape. Biometrics 28: 23–37.Google Scholar

  • Stein, B.R. and J.L. Patton. 2008. Genus Chironectes Illiger, 1811. In: (A.L. Gardner, ed.) Mammals of South America Volume 1 – Marsupials, Xenarthrans, Shrews, and Bats. The University of Chicago Press, Chicago and London. pp. 14–17.Google Scholar

  • Strauss, R.E. 1985. Static allometry and variation in body shape in South America catfish genus Corydoras (Callichthyidae). Syst.Zool. 34: 381–396.Google Scholar

  • Strauss, R.E. 2010. Discriminating groups of organisms. In: (A.M.T. Elewa, ed.) Morphometrics for Nonmorphometricians. Springer-Verlag Berlin Heidelberg, Berlin. pp. 73–91.Google Scholar

  • Strauss, R.E., M.N. Atanassov, and J.A. Oliveira. 2003. Evaluation of the principal-component and expectation-maximization methods for estimating missing data in morphometric studies. J. Vertebr. Paleontol. 23: 284–296.Google Scholar

  • Thorpe, R.S. 1976. Biometric analysis of geographic variation and racial affinities. Biol. Rev. 51: 407–452.Google Scholar

  • Tyndale-Biscoe, C.H. and R.B. Mackenzie. 1976. Reproduction of Didelphis marsupialis and D. albiventris in Colombia. J. Mammal. 57: 249–265.Google Scholar

  • Vilela, J.F., J.A. Oliveira, and C.A.M. Russo. 2015. The diversification of the genus Monodelphis and the chronology of Didelphidae (Didelphimorphia). Zool. J. Linn. Soc. 174: 414–427.Google Scholar

  • Vivo, M. and A.P. Carmignotto. 2004. Holocene vegetation change and the mammal faunas of South America and Africa. J. Biogeogr. 31: 943–957.Google Scholar

  • Zar, J.H. 2010. Biostatistical analysis. Prentice Hall, New Jersey. pp. 944.Google Scholar

  • Zetek, J. 1930. The water opossum – Chironectes panamensis Goldman. J. Mammal. 11: 470–471.Google Scholar

About the article

Received: 2015-06-24

Accepted: 2016-04-19

Published Online: 2016-05-27

Published in Print: 2017-05-01

Citation Information: Mammalia, Volume 81, Issue 3, Pages 275–287, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2015-0109.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in