Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2016: 0.805
5-year IMPACT FACTOR: 1.000

CiteScore 2016: 0.89

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.711

See all formats and pricing
More options …
Volume 81, Issue 3 (May 2017)


Genetic variation in Heteromys nelsoni (Rodentia: Heteromyidae) reveals its possible natural extinction

Evelyn Rios
  • Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, La Paz 23096, Baja California Sur, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Consuelo Lorenzo
  • Corresponding author
  • El Colegio de la Frontera Sur, Departamento de Conservación de la Biodiversidad, Carretera Panamericana y Periférico Sur s/n, San Cristóbal de Las Casas 29290, Chiapas, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio Ticul Álvarez-Castañeda
  • Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, La Paz 23096, Baja California Sur, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-31 | DOI: https://doi.org/10.1515/mammalia-2015-0173


Heteromys nelsoni is restricted to cloud forests in the mountain range of the southern state of Chiapas, Mexico, and western Guatemala. It is considered an endemic species, under special protection, and endangered because its habitat has been modified by excessive logging and extensive cattle grazing. We evaluated the genetic variation of H. nelsoni and the relationship between individuals from two geographic areas surrounding Cerro Mozotal, Chiapas, using three mitochondrial genes [cytochrome b (Cyt b), cytochrome c oxidase subunit 1 (COI), and control region (D-Loop)]. Low genetic diversity (d<0.9, π<0.005) and average divergence (<0.6%) in mtDNA were observed among the specimens examined. The haplotypes are distributed throughout the areas sampled; therefore, no areas where individuals showed genetic identity, with exclusive haplotypes, were found. Heteromys nelsoni populations have undergone a very recent demographic contraction and the low genetic diversity observed indicates an unfavorable future for the species. Changes in the climatic conditions coupled with other anthropogenic pressures have likely reduced the optimal habitat area for the species. It is imperative to develop programs aiming to reduce the probable risk of extinction of this species.

Keywords: Chiapas; cloud forest; genetic diversity; Guatemala; Heteromyinae


  • Allen, J.A. and F.M. Chapman. 1897. On mammals from Yucatan; with descriptions of new species. Bull. Amer. Mus. Nat. Hist. 9: 1–12.Google Scholar

  • Anderson, R.P. and S.A. Jansa. 2007. Genetic comparisons between Heteromys desmarestianus and H. nubicolens (Rodentia: Heteromyidae) in northwestern Costa Rica. Mammal. Biol. 72: 54–61.Google Scholar

  • Arriaga, L., J.M. Espinoza, C. Aguilar, E. Martínez, L. Gómez and E. Loa. 2000. Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.Google Scholar

  • Bradley, R.D. and R.J. Baker. 2001. A test of genetic species concept: cytochrome-b sequence and mammals. J. Mammal. 84: 960–973.Google Scholar

  • Clement, M., D. Posada and K. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1660.Google Scholar

  • Cuarón, A., F. Reid and E. Vázquez. 2008. Heteromys nelsoni. IUCN 2014, IUCN Red List of Threatened Species. Ver 2014.2. www.iucnredlist.org. Accessed 26 September 2014.

  • Fu, Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.Google Scholar

  • Hafner, J.C., J.E. Light, D.J. Hafner, M.S. Hafner, E. Reddington, D.R. Rogers and B.R. Riddle. 2007. Basal Clades and molecular systematics of heteromyid rodents. J. Mammal. 88: 1129–1145.Google Scholar

  • Hajibabaei, M., J.R. de Waard, N.V. Ivanova, S. Ratnasingham, R.T. Dooh, S.L. Kirk, P.M. Mackie and P.D.N. Hebert. 2005. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1959–1967.Google Scholar

  • Hall, E. R. 1981. The mammals of North America. John Wiley & Sons, Inc., New York.Google Scholar

  • Hebert, P.D.N., E.H. Penton, J. M. Burns, D.H. Janzen and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101: 14812–4817.Google Scholar

  • IUCN. 2014. IUCN Red List of Threatened Species. Ver 2012.2. www.iucnredlist.org. Accessed 7 January 2013.

  • Ivanova, N.V., J.R. deWaard and P.D.N. Hebert. 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6: 998–1002.Google Scholar

  • Ivanova, N.V., S.T. Zemlak, R.H. Hanner and P.D.M. Hebert. 2007. Universal primer cocktail for fish DNA barcoding. Mol. Ecol. Res. 7: 544–548.Google Scholar

  • Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.Google Scholar

  • Lorenzo, C., S.T. Álvarez-Castañeda, E. Arellano, J. Arroyo-Cabrales, J. Bolaños, M. Briones-Salas, F.A. Cervantes, J. Chablé-Santos, L. Corral, M. Cortés, P. Cortés-Calva, M. de la Paz-Cuevas, C. Elizalde-Arellano, E. Escobedo-Cabrera, E. Espinoza, E. Estrella, J.P. Gallo-Reynoso, D.F. García-Mendoza, H.A. Garza-Torres, A.G. Christen, F.X. González-Cózatl, R.M. González-Monroy, N. González-Ruiz, D. Guzmán, A.F. Guzmán, S.F. Hernández-Betancourt, Y. Hortelano-Moncada, L.I. Iñiguez, A. Jiménez-Guzmán, Y.N. Kantum, L. León-Paniagua, C. López-González, J.H. López-Soto, J.C. López-Vidal, N. Martin, J. Martínez-Vázquez, S.M.A. Mejenes-López, B. Morales-Vela, R. Muñiz-Martínez, J.A. Niño-Ramírez, A. Núñez-Garduño, C. Pozo, J. Ramírez-Pulido, O.G. Retana, I. Ruan, C.I. Selem, J. Vargas and M.Á. Zúñiga-Ramos. 2012. Los mamíferos de México en las colecciones científicas de Norteamérica. Therya 3: 239–262.Google Scholar

  • Merriam, C.H. 1902. Twenty new pocket mice (Heteromys and Liomys) from Mexico. Proc. Biol. Soc. Wash. 15: 41–50.Google Scholar

  • Moritz, C., J.L. Patton, C.J. Conroy, J.L. Parra, G.C. White and S.R. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322: 261–264.Google Scholar

  • Patton, J.L. 2005. Family Heteromyidae. In: (D.E. Wilson and. D.M. Reeder, eds.) Mammals species of the world. A taxonomic and geographic reference, 3rd ed. Johns Hopkins University, USA. pp. 844–852.Google Scholar

  • Reid, A.F. 1997. A field guide to the mammals of Central America and southeast Mexico. Oxford University Press, New York.Google Scholar

  • Rios, E. and S.T. Álvarez-Castañeda. 2010. Phylogeography and systematics of San Diego pocket mouse (Chaetodipus fallax). J. Mammal. 91: 293–301.Web of ScienceGoogle Scholar

  • Rogers, D.S. 1989. Evolutionary implications of chromosomal variation among spiny pocket mice, genus Heteromys (order Rodentia). Southwest. Nat. 34: 85–100.Google Scholar

  • Rogers, D.S. and M. W. González. 2010. Phylogenetic relationships among spiny pocket mice (Heteromys) inferred from mitochondrial and nuclear sequence data. J. Mammal. 91: 914–930.Google Scholar

  • Rogers, A.R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552–569.Google Scholar

  • Rogers, D.S. and J.E. Rogers. 1992. Heteromys nelsoni. Mamm. Spec. 397: 1–4.Google Scholar

  • Rogers, D.S. and V.L. Vance. 2005. Phylogenetics of Spiny Pocket Mice (Genus Liomys): analysis of cytochrome b based on multiple heuristic approaches. J. Mammal. 86: 1085–1094.Google Scholar

  • Sambrook, J.E., F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York. pp. 1659.Google Scholar

  • Sántiz, E., C. Lorenzo, A. Carrillo-Reyes, D. Navarrete and G. Islebe. 2016. Effect of climate change on the distribution of a critically threatened species. Therya 7: 147–159.Google Scholar

  • SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales). 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 30 de diciembre de 2010.Google Scholar

  • Sikes, R.S., W.L. Gannon and Animal Care and Use Committee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92: 235–253.Google Scholar

  • Smith, M.F. 1998. Phylogenetic relationships and geographical structure in pocket gophers in the genus Thomomys. Mol. Phyl. Evol. 9: 1–14.Google Scholar

  • Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.Google Scholar

  • Toledo-Aceves, T., J.A. Meave, M. González-Espinosa and N. Ramírez-Marcial. 2011. Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J. Environ. Manage. 92: 974–981.Google Scholar

About the article

Received: 2015-11-23

Accepted: 2016-04-19

Published Online: 2016-05-31

Published in Print: 2017-05-01

Citation Information: Mammalia, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2015-0173.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in