Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 81, Issue 5


Activity patterns in sympatric carnivores in the Nahuelbuta Mountain Range, southern-central Chile

Alfredo H. Zúñiga
  • Corresponding author
  • Laboratorio de Vida Silvestre, Departamento de Ciencias Biológicas y Diversidad, Universidad de Los Lagos, Avenida Fuchslocher 1305, Casilla 933, Osorno, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime E. Jiménez
  • Department of Biological Sciences and Philosophy and Religion Studies, University of North Texas, TX, United States of America
  • Estación de Campo Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile; Institute of Ecology and Biodiversity, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pablo Ramírez de Arellano
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/mammalia-2015-0090


Species interactions determine the structure of biological communities. In particular, interference behavior is critical as dominant species can displace subordinate species depending on local ecological conditions. In carnivores, the outcome of interference may have important consequences from the point of view of conservation, especially when vulnerable species are the ones suffering displacement. Using 24 baited camera traps and a sampling effort of 2821 trap nights, we examined the activity patterns and spatial overlap of an assemblage of five sympatric carnivores in the Nahuelbuta Mountain Range, in southern-central Chile. In this forested landscape we found predominantly nocturnal activity in all species, but not for the puma (Puma concolor) and to a lesser extent, for the guigna (Leopardus guigna). In terms of spatial overlap, there was a non-significant negative relationship between the puma and the culpeo (Lycalopex culpaeus), and a positive relationship among the three smaller species of the assemblage, the guigna, the hog-nosed skunk (Conepatus chinga), and the Darwin’s fox (Lycalopex fulvipes). Culpeo displayed a negative spatial relationship with the three later species appearing to be a product of interference behavior. Species-specific ecological differences, including prey types and spatio-temporal partitioning among the carnivores appear to allow their coexistence.

Keywords: assemblage; camera traps; circadian cycle; coexistence; interference


  • Armesto, J., J.C. Aravena, C. Villagrán, C. Pérez and G.G. Parker. 1996a. Bosques templados de la Cordillera de la Costa. In: (J. Armesto, C. Villagrán and M.K. Arroyo, eds.) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, Chile. pp. 199–213.Google Scholar

  • Armesto, J., R. Rozzi and P. León-Lobos. 1996b. Ecología de los bosques chilenos: síntesis y proyecciones. In: (J. Armesto, C. Villagrán and M.K. Arroyo, eds.) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, Chile, pp. 405–421.Google Scholar

  • Berger, K.M. and E.M. Gese. 2007. Does interference competition with wolves limit the distribution and abundance of coyotes? J. Anim. Ecol. 76: 1075–1085.CrossrefGoogle Scholar

  • Carothers, J.H. and F.M. Jaksic. 1984. Time as a niche difference: the role of interference competition. Oikos 42: 403–406.CrossrefGoogle Scholar

  • Case, T.J. and M.E. Gilpin. 1974. Interference competition and niche theory. Proc. Natl. Acad. Sci. USA 71: 3073–3077.CrossrefGoogle Scholar

  • Corley, J.C., G.F. Fernández, A.F. Capurro, A.J. Novaro, M.C. Funes and A. Travaini. 1995. Selection of cricetine prey by the culpeo fox in Patagonia: a differential prey vulnerability hypothesis. Mammalia 59: 315–325.CrossrefGoogle Scholar

  • Delibes-Mateos, M., F. Díaz-Ruiz, J. Caro and P. Ferreras. 2014. Activity patterns of the vulnerable guiña (Leopardus guigna) and its main prey in the Valdivian rainforest of southern Chile. Mamm. Biol. 79: 393–397.CrossrefGoogle Scholar

  • De Oliveira, T.G. and J.A. Pereira. 2014. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mammal. 21: 427–436.Google Scholar

  • Di Bitetti, M., Y.E. Di Blanco, J.A. Pereira, A. Paviolo and I. Jiménez Pérez. 2009. Time partitioning favours the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus). J. Mammal. 90: 479–490.CrossrefGoogle Scholar

  • Di Castri, F. and E. Hajek. 1976. Bioclimatología de Chile. Ediciones Universidad Católica de Chile, Santiago, Chile.Google Scholar

  • Donadio, E. and S.W. Buskirk. 2006. Diet, morphology, and interspecific killing in Carnivora. Am. Natur. 167: 524–536.Google Scholar

  • Donadio, E., S. Di Martino, M. Aubone and A.J. Novaro. 2001. Activity patterns, home-range and habitat selection of the common hog-nosed skunk, Conepatus chinga (Mammalia: Mustelidae), in the northwestern Patagonia. Mammalia 65: 49–54.Google Scholar

  • Dunstone, N., R. Freer, G. Acosta-Jamett, I. Durbin, J. Wyllie, M. Mazzolli and D. Scott. 2002. Uso del hábitat, actividad y dieta de la güiña (Oncifelis guigna) en el Parque Nacional Laguna San Rafael, XI Región, Chile. Bol. Mus. Nac. Hist. Nat. (Chile) 51: 147–158.Google Scholar

  • Eldridge, W.D., M.M. MacNamara and N.V. Pacheco. 1987. Activity patterns and habitat utilization of pudus (Pudu puda) in south-central Chile. In: (C.M.Wemmer, ed.) Biology and management of the Cervidae. Smithsonian Institution Press, Washington, DC, pp. 352–370.Google Scholar

  • Erikstad, K.E., I. Byrkjedal and J.A. Kålås. 1989. Resource partitioning among seven carabid species on Handangervidda, southern Norway. Ann. Zool. Fenici 26: 113–120.Google Scholar

  • Fedriani, J.M. 1997. Relaciones interespecíficas entre el lince ibérico, Lynx pardinus, el zorro, Vulpes vulpes, y el tejón, Meles meles, en el Parque Nacional de Doñana. [Doctoral Thesis]. [Sevilla, Spain]. Universidad de Sevilla. pp. 191.Google Scholar

  • Garneau, D.E., E. Post, T. Boudreau, M. Keech and P. Valkenburg. 2007. Spatio-temporal patterns of predation among three sympatric predators in a single-prey system. Wild. Biol. 13: 186–194.Google Scholar

  • Greer, J.K. 1965. Mammals of Malleco Province, Chile. Publ. Mus. Mich. St. Univ. Biol. Ser. 3: 51–161.Google Scholar

  • Hayward, M.W. and R. Slotow. 2009. Temporal partitioning of activity in large carnivores: tests of multiple hypotheses. S. Afr. J. Wild. Res. 39: 109–125.Google Scholar

  • Hernández, F. 2010. Antecedentes de historia natural, ocupación y percepción social de Leopardus guigna en un ambiente fragmentado de bosque templado en la zona andina de La Araucanía, Chile (39°15′S, 71°48′O). [MS Thesis] [Santiago, Chile]. Pontificia Universidad Católica de Chile. pp. 71.Google Scholar

  • Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65–70.Google Scholar

  • Hunter, J.S. 2009. Familiarity breeds contempt: effects of striped skunk color, shape, and abundance on wild carnivore behavior. Behav. Ecol. 20: 1315–1322.CrossrefGoogle Scholar

  • Iriarte, A. and F. Jaksic. 2012. Los carnívoros de Chile. Flora & Fauna/CASEB Ediciones. pp. 257.Google Scholar

  • Jácomo, A.T.A., L. Silveira and J.A.F. Diniz-Filho. 2004. Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J. Zool. 262: 99–106.Google Scholar

  • Jaksic, F.M., R.P. Schlatter and J.L. Yáñez. 1980. Feeding ecology of central Chilean foxes, Dusicyon culpaeus and Dusicyon griseus. J. Mammal. 61: 254–260.CrossrefGoogle Scholar

  • Jiménez, J.E. 1993. Comparative ecology of Dusicyon foxes at the Chinchilla National Reserve in northcentral Chile. [MS Thesis]. [Gainesville, FL]. pp. Viii+163.Google Scholar

  • Jiménez, J.E. 2000. Viability of the endangered Darwin’s fox (Pseudalopex fulvipes): assessing ecological factors in the last mainland population and its ecology on the island population. Final report. Scott Neotropic Fund, Lincoln Park Zoo, Chicago. pp. 68.Google Scholar

  • Jiménez, J.E. 2007. Ecology of a coastal population of the critically endangered Darwin’s fox (Pseudalopex fulvipes) on Chiloé Island, southern Chile. J. Zool. 271: 63–77.Google Scholar

  • Jiménez, J.E., P.A. Marquet, R.G. Medel and F.M. Jaksic. 1990. Comparative ecology of Darwin’s fox (Pseudalopex fulvipes) in mainland and island settings of southern Chile. Rev. Chil. Hist. Nat. 63: 177–186.Google Scholar

  • Jiménez, J.E., J.L. Yáñez, E.L. Tabilo and F.M. Jaksic. 1996. Niche-complementarity of South American foxes: reanalysis and test of a hypothesis. Rev. Chil. Hist. Nat. 69: 113–123.Google Scholar

  • Jiménez, J.E., M. Parada, P. Cortés and E. Rodríguez. 2001. Spatial ecology of the culpeo fox (Pseudalopex culpaeus) in the Highland desert of Northern Chile. Canid Biology and Conservation International Conference. IUCN/SSC Canid Specialist Group, Oxford, UK. pp. 74.Google Scholar

  • Johnson, W.E. and W.L. Franklin. 1994. Spatial resource partitioning by sympatric grey fox (Dusicyon griseus) and culpeo fox (Dusicyon culpaeus) in southen Chile. Can. J. Zool. 72: 1788–1793.Google Scholar

  • Kamler, J.F., U. Stenkewitz and D.W. Macdonald. 2013. Lethal and sublethal effects of black-backed jackals on cape foxes and bat-eared foxes. J. Mammal. 94: 295–306.CrossrefGoogle Scholar

  • Kasper, C.H., M.L. Da Fontoura-Rodrigues, G.N. Cavalcanti, T.R.O. de Freitas, F.H.G. Rodrigues, T.G. de Oliveira and E. Elzkirk. 2009. Recent advances in the knowledge of Molina’s Hog-nosed skunk Conepatus chinga and striped hog-nosed skunk C. semistratus in South America. Small Carniv. Conserv. 41: 25–28.Google Scholar

  • Kays, R.W. and K.M. Slauson. 2008. Remote cameras. In: (R. Long, P. Mackay, W. Zielinski and J. Ray, eds.) Non invasive survey methods for carnivores. Island Press, Washington, DC, pp. 110–140.Google Scholar

  • Kočárek, P. 2002. Diel activity patterns of carrion-visiting Coleoptera studied by time-sorting pitfall traps. Biol. 57: 199–211.Google Scholar

  • Koehler, G. and M. Hornocker. 1991. Seasonal resource use among mountain lions, bobcats, and coyotes. J. Mammal. 72: 391–396.CrossrefGoogle Scholar

  • Kortello, A. D., T.E. Hurd and D.L. Murray. 2007. Interactions between cougars (Puma concolor) and gray wolves (Canis lupus) in Banff National Park, Alberta. Ecoscience 14: 214–222.CrossrefGoogle Scholar

  • Kronfeld-Schor, N. and T. Dayan. 2003. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Syst. 34: 153–181.CrossrefGoogle Scholar

  • Lucherini, M., J.I. Repucci, R.S. Walker, M.L. Villalba, A. Wurstten, G. Gallardo, R. Villalobos and M. Perovic. 2009. Activity pattern segregation of carnivores in the High Andes. J. Mammal. 90: 1404–1409.CrossrefGoogle Scholar

  • Luebert, F. and P. Pliscoff P. 2004. Clasificación de pisos de vegetación y análisis de representatividad ecológica de áreas propuestas para la protección de la ecorregión. Documento No. 10 Serie de publicaciones WWF Chile Programa Ecorregión Valdiviana. pp. 178.Google Scholar

  • McCain, E.B. 2008. Daily activity patterns of mountain lions (Puma concolor) in relation to the activity of their prey species in southern Arizona. [MS Thesis]. [Arcata, California]: Humboldt State University. pp. 45.Google Scholar

  • Monteverde, M.J. and L. Piudo. 2011. Activity patterns of the culpeo fox (Lycalopex culpaeus) in a non-hunting area of northwestern Patagonia, Argentina. Mamm St. 36: 119–125.Google Scholar

  • Moreira-Arce, D., P.M. Vergara, S. Boutin, G. Carrasco, R. Briones, G.E. Soto and J.E. Jiménez. 2016. Mesocarnivores respond to fine-grain structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. For. Ecol. Manage. 361: 208–225.Google Scholar

  • Muñoz, M., H. Núñez and J. Yáñez. 1996. Libro rojo de los sitios prioritarios para la conservación de la diversidad biológica en Chile. Santiago: Ministerio de Agricultura, Corporación Nacional Forestal. pp. 203.Google Scholar

  • Muñoz-Pedreros, A., R. Murúa and L. González. 1990. Nicho ecológico de micromamíferos en un agroecosistema forestal de Chile central. Rev. Chil. Hist. Nat. 63: 267–277.Google Scholar

  • Murúa, R. 1996. Comunidades de mamíferos del bosque templado de Chile. In: (Armesto J., Villagrán C., Arroyo M.K., eds.) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp. 113–133.Google Scholar

  • Neale, J. and B. Sacks. 2001. Food habits and space use of gray foxes in relation to sympatric foxes and bobcats. Can. J. Zool. 79: 1794–1800.Google Scholar

  • Novaro, A. 2005. An empirical test of source-sink dynamics by hunting. J Anim Ecol. 42: 910–920.Google Scholar

  • Novaro, A., C.A. Moraga, C. Briceño, M.C. Funes and A. Marino. 2009. First records of culpeo (Lycalopex culpaeus) attacks and cooperative defense by guanacos (Lama guanicoe). Mammalia 73: 148–150.CrossrefGoogle Scholar

  • Paquet, P.C. 1992. Prey use strategies of sympatric wolves and coyotes in Riding Mountain National Park, Manitoba. J. Mammal. 73: 337–343.CrossrefGoogle Scholar

  • Paviolo, A., Y.E. Di Blanco, C.D. De Angelo and M.S. Di Bitetti. 2009. Protection affects the abundance and activity patterns of pumas in the Atlantic forest. J. Mammal. 90: 926–934.CrossrefGoogle Scholar

  • Pia, M.V. 2013. Trophic interactions between puma and endemic culpeo fox after livestock removal in the high mountains of central Argentina. Mammalia 77: 273–283.CrossrefGoogle Scholar

  • Pianka, E. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4: 53–74.CrossrefGoogle Scholar

  • Prange, S. and S.D. Gehrt. 2007. Response of skunks to a simulated increase in coyote activity. J. Mammal. 88: 1040–1049.CrossrefGoogle Scholar

  • Rau, J.R. and J.E. Jiménez. 2002. Diet of puma (Puma concolor, Carnivora: Felidae) in Coastal and Andean Ranges of Southern Chile. Stud. Neotrop. Fauna and Environ. 37: 201–205.Google Scholar

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evol. 43: 223–225.CrossrefGoogle Scholar

  • Rivas, L.R. 1964. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “alotopic”. Syst. Zool. 13: 42–43.CrossrefGoogle Scholar

  • Rovero, F. and A.R. Marshall. 2009. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46: 1011–1017.CrossrefGoogle Scholar

  • Sanderson, J., M.E. Sunquist and A. Iriarte. 2002. Natural history and landscape-use of guignas (Oncifelis guigna) on Isla Grande de Chiloé, Chile. J. Mammal. 83: 608–613.CrossrefGoogle Scholar

  • Silva-Rodríguez, E.A., G. Ortega-Solís and J.E. Jiménez. 2010. Conservation and ecological implications of the use of space by chilla foxes and free-ranging dogs in a human-dominated landscape in southern Chile. Aus. Ecol. 35: 765–777.Google Scholar

  • Scognamillo, D., M.E. Maxit, M. Sunquist and J. Polisar. 2003. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J. Zool. 259: 269–279.Google Scholar

  • Tattersal, I. 1979. Patterns of activity in the Mayotte lemur, Lemur fulvus mayottensis. J. Mammal. 60: 314–323.CrossrefGoogle Scholar

  • Terborgh, J. and B. Winter. 1980. Some causes of extinction. In: (M.E. Souléand and B.A. Wilcox, eds.) Conservation Biology: an evolutionary-ecological perspective. Sinauer, Massachusetts, Sunderland. pp. 119–133.Google Scholar

  • Wilson, D.E. and D.M. Reeder. 2005. Mammal species of the world. Johns Hopkins University Press, Baltimore.Google Scholar

  • Wooding, J.B. 1984. Coyote food habits and the spatial relationship of coyotes and foxes in Mississippi and Alabama. [MS Thesis]. Mississippi State University, State College.Google Scholar

  • Zapata, S.C., A. Travaini, P. Ferreras and M. Delibes. 2007. Analysis of trophic structure of two carnivore assemblages by means of guild identification. Eur. J. Wild. Res. 53: 276–286.Google Scholar

  • Zar, J.H. 1984. Biostatistical analysis. 2nd. ed. Prentice Hall Inc., Englewood Cliffs, New York.Google Scholar

  • Zhang, J., Q. Ding and J. Huang. 2010. Spaa: Species association analysis. R package version 0.2.0. http://CRAN.R-project.org/package=spaa.

  • Zielinski, W.J. 1988. The influence of daily variation in foraging cost on the activity of small carnivores. Anim. Behav. 36: 239–249.CrossrefGoogle Scholar

  • Zielinski, W.J. and T.E. Kucera. 1995. American marten, fisher, lynx, and wolverine: survey methods for their detection. U. S. Departament of Agriculture, General Technical Report PSW-GTR-157, Albany, California.Google Scholar

About the article

Received: 2015-06-24

Accepted: 2016-08-26

Published Online: 2016-10-18

Published in Print: 2017-08-28

Citation Information: Mammalia, Volume 81, Issue 5, Pages 445–453, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2015-0090.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alfredo H. Zúñiga and Jaime E. Jiménez
Journal of Natural History, 2018, Volume 52, Number 31-32, Page 2047

Comments (0)

Please log in or register to comment.
Log in