Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 81, Issue 5


Niche overlap and shared distributional patterns between two South American small carnivorans: Galictis cuja and Lyncodon patagonicus (Carnivora: Mustelidae)

Mauro Ignacio Schiaffini
  • Corresponding author
  • Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Roca 780. CP 9200. Esquel, Chubut, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-25 | DOI: https://doi.org/10.1515/mammalia-2015-0158


Limiting abiotic conditions might shape boundaries of species distribution, while biotic factors influence such distributions through interspecific relationships. When two morphologically and or/ecologically similar species are geographically overlapped, a distribution displacement or a change in size or morphology is expected to minimize competition. Environmental niche modeling (ENM) might help us understand the relationship between distribution of a species’ pair and their relationship with environmental conditions, allowing us to test the possible existence of shared distribution patterns and/or displacements across wide geographic ranges. In this work, distribution patterns and climatic and geographic overlap are analyzed between two South American small carnivorans, Galictis cuja and Lyncodon patagonicus, using geographic information systems and ENM. Environmental tolerance of the latter species seems to be enclosed within the range of the former, with high geographic overlap. No evidence of niche displacement was found between them. G. cuja seems to be a more generalist species than L. patagonicus, and size difference (e.g. body size, dentition size) might be the mechanism that allows coexistence between these highly similar species, although future field studies might be needed to support this statement.

This article offers supplementary material which is provided at the end of the article.

Keywords: competition; distribution patterns; ENMTools; environmental niche modeling; MaxEnt


  • Allouche, O., A. Tsoar and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232.Google Scholar

  • Birney, E.C. and J.A. Monjeau. 2003. Latitudinal patterns in South American Marsupial Biology. In: (M. Jones, C. Dickmann and M. Archer, eds.) Carnivorous with pouches: biology of carnivorous marsupials. SCIRO Publishing, Melbourne, Australia. pp. 293–313.Google Scholar

  • Bontemps, S., P. Defourney, E. Van Bogaert, O. Arino, V. Kalogirou and J. Ramos Pérez. 2011. GlobCover 2009- products description and validation report. ESA and Université Catholique de Louvain, Fracasti, Italy. pp. 53.Google Scholar

  • Bornholdt, R., K. Helgen, K.P. Koepfli, L. Oliveira, M. Lucherini and E. Eizirik. 2013. Taxonomic revision of the genus Galictis (Carnivora: Mustelidae): species delimitation, morphological diagnosis, and refined mapping of geographical distribution. Zool. J. Linn. Soc. 167: 449–472.Google Scholar

  • Broennimann, O., U.A. Treier, H. Müller-Schárer, W. Thuiller, A.T. Peterson and A. Guisan. 2007. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10: 701–709.Google Scholar

  • Brown, J.H. and R.C. Lasiewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology 53: 939–943.Google Scholar

  • Burkart, R., N.O. Bárbaro, R.O. Sánchez and D.A. Gómez. 1999. Eco-Regiones de la Argentina. Presidencia de la Nación, Secretaría de Recursos Naturales y Desarrollo Sustentable. Programa Desarrollo Institucional Ambiental. Componente Política Ambiental, Argentina. pp. 43.Google Scholar

  • Cheng, J. 2008. Modelling and understanding multi-temporal use changes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37: 189–193.Google Scholar

  • Cox, C.B. and P.D. Moore. 2005. Biogeography. An Ecological and Evolutionary Approach. 7th ed, Blackwell Publishing, Oxford, UK. pp. 428.Google Scholar

  • Davies, T.J., S. Meiri, T.G. Barraclough and J.L. Gitleman. 2007. Species co-existence and character divergence among carnivores. Ecol. Lett. 10: 146–152.Google Scholar

  • Dayan, T. and D. Simberloff. 1998. Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28: 99–124.Google Scholar

  • Dayan, T. and D. Simberloff. 2005. Ecological and community-wide character displacement: the next generation. Ecol. Lett. 8: 875–894.Google Scholar

  • de Blainville, H.M.D. 1842. Ostéographie ou description iconographique comparée du squelette et du systéme dentaire des mammifères récents et fossiles des cinq classes d´animaux vertébrés récents et fossiles our sevir de base à la zoologie et à la géologie. A. Bertrand, Paris, France.Google Scholar

  • Delibes, M., A. Travaini, S.C. Zapata and F. Palomares. 2003. Alien mammals and the trophic position of the lesser grison (Galictis cuja) in Argentinean Patagonia. Can. J. Zool. 81: 157–162.Google Scholar

  • Díaz Isenrath, G., G. Aprile and L. Soler. 2012. Lyncodon patagonicus (de Blainville). In: (R.A. Ojeda, V. Chillo and B. Díaz Isenrath, eds.) Libro rojo de mamíferos amenazados de la Argentina. Sociedad Argentina para el Estudio de los Mamíferos, Mendoza, Argentina. pp. 107.Google Scholar

  • Dinerstein, E., D.M. Olson, D.J. Graham, A.L. Webster, S.A. Primm, M.P. Bookbinder and G. Ledec. 1995. Una evaluación del estado de conservación de las ecoregiones terrestres de América Latina y el Caribe. Banco Mundial/World Wildlife Fund, Washington, USA. pp. 129.Google Scholar

  • Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. González, M. Tablada and C.W. Robledo. 2010. InfoStat versión 2010. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar

  • Diuk- Wasser, M.A. and M.H. Cassini. 1998. A study on the diet of minor grison and a preliminary analysis of their role in the control of rabbits in Patagonia. Stud. Neotrop. Fauna Environ. 33: 3–6.Google Scholar

  • Ebensperger, L.A., J.E. Mella and J.A. Simonetti. 1991. Trophic-niche relationships among Galictis cuja, Dusicyon culpaeus, and Tyto alba in central Chile. J. Mammal. 72: 820–823.Google Scholar

  • Elith, J., C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M. Overton, A. Townsend Peterson, S.J. Phillips, K. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wisz and N.E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.Google Scholar

  • Ewer, R.F. 1973. The Carnivores. Cornell University Press, Ithaca, USA. pp. 494.Google Scholar

  • Formoso, A.E., G.M. Martin, P. Teta, A.E. Carbajo, D.E. Udrizar Sauthier and U.F.J. Pardiñas. 2015. Regional extinctions and quaternary shifts in the geographic range of Lestodelphys halli, the southernmost living marsupial: clues for its conservation. PLoS One 10: e0132130.Google Scholar

  • Franklin, J. 2009. Mapping species distributions. Spatial inference and prediction. Cambridge University Press, New York, USA. pp. 320.Google Scholar

  • Gaston, K.J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford, UK. pp. 280.Google Scholar

  • Giménez, A.L., N.P. Giannini, M.I. Schiaffini and G.M. Martin. 2015. Geographic and potential distribution of a poorly known South American bat, Histiotus macrotus (Chiroptera: Vespertilionidae). Acta Chiropterol. 17: 143–158.Google Scholar

  • Guisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.Google Scholar

  • Gutiérrez, E.E., R.A. Boria and R.P. Anderson. 2014. Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossum. Ecography 37: 741–753.Google Scholar

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005a. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.Google Scholar

  • Hijmans, R.J., L. Guarino, P. Mathur, A. Jarvis, E. Rojas, M. Cruz and I. Barrantes. 2005b. DIVA-GIS, version 7.5.Google Scholar

  • Jollife, I.T. 2002. Principal component analysis, 2nd ed. Springer Series in Statistics. Spirnger-Verlag, New York. USA. pp. 487.Google Scholar

  • Jones, M. 1997. Character displacement in Australian dasyurid carnivores: size relationships and prey patterns. Ecology 78: 2569–2587.Google Scholar

  • Kelt, D. and U. Pardiñas. 2008. Lyncodon patagonicus. The IUCN Red List of Threatened Species. http://dx.doi.org/.CrossrefGoogle Scholar

  • Larivière, S. and A.P. Jennings. 2009. Family Mustelidae (weasels and relatives). In: (D.E. Wilson, and R.A. Mittermeier, eds.) Handbook of the mammals of the world. 1, Carnivores. Lynx Editions in association with Conservation International and IUCN. pp. 564–656.Google Scholar

  • Levins, R. 1968. Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton, NJ, USA. pp. 132.Google Scholar

  • Mackey, B.G. and D.B. Lindenmayer. 2001. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28: 1147–1166.Google Scholar

  • Merow, C., M.J. Smith and J.A. Silander Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069.Google Scholar

  • Molina, G.I. 1782. Saggio sulla storia naturale del Chili. Stamperia di Sto. Tommaso d’Aquino. Bologna, Italy.Google Scholar

  • Monjeau, J.A., J.A. Tort, J. Márquez, P. Jayat, B.N. Palmer Fry, S.D. Nazar Anchorena, A. Di Vicenzo and F. Polop. 2009. Latitudinal patterns of species richness distribution in South American carnivores. Mastozool. Neotrop. 16: 95–108.Google Scholar

  • Morrone, J.J. 2001. Biogeografía de América Latina y El Caribe. Manuales y Tesis SEA 3. Zaragoza, España. pp. 148.Google Scholar

  • Morrone, J.J. 2006. Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu. Rev. Entomol. 51: 467–494.Google Scholar

  • Myers, C.E., A.L. Stigall and B.S. Lieberman. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41: 226–244.Google Scholar

  • Nakazato, T., D.L. Warren and L.C. Moyle. 2010. Ecological and geographical modes of species divergence in wild tomatoes. Am. J. Bot. 97: 680–693.Google Scholar

  • Palomares, E. and T.M. Caro. 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153: 492–508.Google Scholar

  • Pearson, R.G., C.J. Raxworthy, M. Nakamura and A.T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102–117.Google Scholar

  • Peers, M.J.L., D.H. Thornton and D.L. Murray. 2013. Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat. Proc. R. Soc. B. 280: 20132495.Google Scholar

  • Petraitis, P.S. 1979. Likelihood measures of niche breadth and overlap. Ecology 60: 703–710.Google Scholar

  • Phillips, S.J., M. Dudík and R.E. Schapire. 2004. A maximum entropy approach to Environmental Niche Modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada. pp. 8.Google Scholar

  • Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231–259.Google Scholar

  • Prevosti, F.J. and U.F.J. Pardiñas. 2001. Variaciones corológicas de Lyncodon patagonicus (Carnivora, Mustelidae) durante el Cuaternario. Mastozool. Neotrop. 8: 21–39.Google Scholar

  • Prevosti, F.J., P. Teta and U.F.J. Pardiñas. 2009. Distribution, natural history, and conservation of the Patagonian weasel Lyncodon patagonicus. Small Carnivore Conserv. 41: 29–34.Google Scholar

  • QGIS. 2015. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.Google Scholar

  • Radosavljevic, A. and R.P. Anderson. 2014. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41: 629–643.Google Scholar

  • Reid, F. and K. Helgen. 2008. Galictis cuja. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41639A10525484.en.

  • Rivas, L.R. 1964. A reinterpretations of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotropic”. Syst. Zool. 13: 42–43.Google Scholar

  • Sade, S., J.R. Rau and J.I. Orellana. 2012. Dieta del quique (Galictis cuja Molina 1782) en un remanente de bosque valdiviano fragmentado del sur de Chile. Gayana 76: 112–116.Google Scholar

  • Sato, J.J., M. Wolsan, F.J. Prevosti, G. D’Elia, C. Begg, K. Begg, T. Hosoda, K.L. Campbell and H. Suzuki. 2012. Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol. Phylogenet Evol. 63: 745–757.Google Scholar

  • Schiaffini, M.I. 2014. Ensambles de pequeños carnívoros (Carnivora: Mustelidae y Mephitidae) en patagonia: Taxonomía, distribución y repartición trófica. Ph.D Thesis, Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, Argentina.Google Scholar

  • Schiaffini, M.I. and F.J. Prevosti. 2014. Trophic segregation of small carnivorans (Carnivora: Mustelidae and Mephitidae) from the southern cone of South America. J. Mammal. Evol. 21: 407–416.Google Scholar

  • Schiaffini, M.I., G.M. Martin, A.L. Giménez and F.J. Prevosti. 2013. Distribution of Lyncodon patagonicus (Carnivora: Mustelidae): changes from the Last Glacial Maximum to the present. J. Mammal. 94: 339–350.Google Scholar

  • Schoener, T.W. 1969. Models of optimal size for solitary predators. Am. Nat. 103: 277–313.Google Scholar

  • Sheffield, S.R. and C.M. King. 1994. Mustela nivalis. Mammal. Species 454: 1–10.Google Scholar

  • Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10: 1115–1123.Google Scholar

  • Soberón, J. and A.T. Peterson. 2005. Interpretation of niches of fundamental ecological niches and species’ distributional areas. Biodivers. Inf. 2: 1–10.Google Scholar

  • Soler, L. and G. Aprile. 2012. Galictis cuja (Molina). In: (R.A. Ojeda, V. Chillo and B. Díaz Isenrath, eds.) Libro rojo de mamíferos amenazados de la Argentina. Sociedad Argentina para el Estudio de los Mamíferos, Mendoza, Argentina. pp. 103.Google Scholar

  • Virgós, E., T. Romero and J.G. Mangas. 2001. Factors determining “gaps” in the distribution of a small carnivore, the common genet (Genetta genetta), in central Spain. Can. J. Zool. 79: 1544–1551.Google Scholar

  • Warren, D.L. and S.N. Siefert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21: 335–342.Google Scholar

  • Warren, D.L., R.E. Glor and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62-11: 2868–2883.Google Scholar

  • Warren, D.L., R.E. Glor, M. Turelli. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.Google Scholar

  • Wooten, J.A. and H.L. Gibbs. 2011. Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. J. Evolution. Biol. 25: 317–328.Google Scholar

  • Yensen, E. and T. Tarifa. 2003. Galictis cuja. Mammal. Species 728: 1–8.Google Scholar

  • Zapata, S.C., A. Travaini, M. Delibes and R. Martínez-Peck. 2005. Annual food habits of the lesser grison (Galictis cuja) at the southern limit of its range. Mammalia 69: 85–88.Google Scholar

About the article

Received: 2015-09-17

Accepted: 2016-08-26

Published Online: 2016-10-25

Published in Print: 2017-08-28

Citation Information: Mammalia, Volume 81, Issue 5, Pages 455–463, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2015-0158.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in