Allouche, O., A. Tsoar and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232.Google Scholar
Birney, E.C. and J.A. Monjeau. 2003. Latitudinal patterns in South American Marsupial Biology. In: (M. Jones, C. Dickmann and M. Archer, eds.) Carnivorous with pouches: biology of carnivorous marsupials. SCIRO Publishing, Melbourne, Australia. pp. 293–313.Google Scholar
Bontemps, S., P. Defourney, E. Van Bogaert, O. Arino, V. Kalogirou and J. Ramos Pérez. 2011. GlobCover 2009- products description and validation report. ESA and Université Catholique de Louvain, Fracasti, Italy. pp. 53.Google Scholar
Bornholdt, R., K. Helgen, K.P. Koepfli, L. Oliveira, M. Lucherini and E. Eizirik. 2013. Taxonomic revision of the genus Galictis (Carnivora: Mustelidae): species delimitation, morphological diagnosis, and refined mapping of geographical distribution. Zool. J. Linn. Soc. 167: 449–472.Google Scholar
Broennimann, O., U.A. Treier, H. Müller-Schárer, W. Thuiller, A.T. Peterson and A. Guisan. 2007. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10: 701–709.Google Scholar
Brown, J.H. and R.C. Lasiewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology 53: 939–943.Google Scholar
Burkart, R., N.O. Bárbaro, R.O. Sánchez and D.A. Gómez. 1999. Eco-Regiones de la Argentina. Presidencia de la Nación, Secretaría de Recursos Naturales y Desarrollo Sustentable. Programa Desarrollo Institucional Ambiental. Componente Política Ambiental, Argentina. pp. 43.Google Scholar
Cheng, J. 2008. Modelling and understanding multi-temporal use changes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37: 189–193.Google Scholar
Cox, C.B. and P.D. Moore. 2005. Biogeography. An Ecological and Evolutionary Approach. 7th ed, Blackwell Publishing, Oxford, UK. pp. 428.Google Scholar
Davies, T.J., S. Meiri, T.G. Barraclough and J.L. Gitleman. 2007. Species co-existence and character divergence among carnivores. Ecol. Lett. 10: 146–152.Google Scholar
Dayan, T. and D. Simberloff. 1998. Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28: 99–124.Google Scholar
Dayan, T. and D. Simberloff. 2005. Ecological and community-wide character displacement: the next generation. Ecol. Lett. 8: 875–894.Google Scholar
de Blainville, H.M.D. 1842. Ostéographie ou description iconographique comparée du squelette et du systéme dentaire des mammifères récents et fossiles des cinq classes d´animaux vertébrés récents et fossiles our sevir de base à la zoologie et à la géologie. A. Bertrand, Paris, France.Google Scholar
Delibes, M., A. Travaini, S.C. Zapata and F. Palomares. 2003. Alien mammals and the trophic position of the lesser grison (Galictis cuja) in Argentinean Patagonia. Can. J. Zool. 81: 157–162.Google Scholar
Díaz Isenrath, G., G. Aprile and L. Soler. 2012. Lyncodon patagonicus (de Blainville). In: (R.A. Ojeda, V. Chillo and B. Díaz Isenrath, eds.) Libro rojo de mamíferos amenazados de la Argentina. Sociedad Argentina para el Estudio de los Mamíferos, Mendoza, Argentina. pp. 107.Google Scholar
Dinerstein, E., D.M. Olson, D.J. Graham, A.L. Webster, S.A. Primm, M.P. Bookbinder and G. Ledec. 1995. Una evaluación del estado de conservación de las ecoregiones terrestres de América Latina y el Caribe. Banco Mundial/World Wildlife Fund, Washington, USA. pp. 129.Google Scholar
Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. González, M. Tablada and C.W. Robledo. 2010. InfoStat versión 2010. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar
Diuk- Wasser, M.A. and M.H. Cassini. 1998. A study on the diet of minor grison and a preliminary analysis of their role in the control of rabbits in Patagonia. Stud. Neotrop. Fauna Environ. 33: 3–6.Google Scholar
Ebensperger, L.A., J.E. Mella and J.A. Simonetti. 1991. Trophic-niche relationships among Galictis cuja, Dusicyon culpaeus, and Tyto alba in central Chile. J. Mammal. 72: 820–823.Google Scholar
Elith, J., C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M. Overton, A. Townsend Peterson, S.J. Phillips, K. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wisz and N.E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.Google Scholar
Ewer, R.F. 1973. The Carnivores. Cornell University Press, Ithaca, USA. pp. 494.Google Scholar
Formoso, A.E., G.M. Martin, P. Teta, A.E. Carbajo, D.E. Udrizar Sauthier and U.F.J. Pardiñas. 2015. Regional extinctions and quaternary shifts in the geographic range of Lestodelphys halli, the southernmost living marsupial: clues for its conservation. PLoS One 10: e0132130.Google Scholar
Franklin, J. 2009. Mapping species distributions. Spatial inference and prediction. Cambridge University Press, New York, USA. pp. 320.Google Scholar
Gaston, K.J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford, UK. pp. 280.Google Scholar
Giménez, A.L., N.P. Giannini, M.I. Schiaffini and G.M. Martin. 2015. Geographic and potential distribution of a poorly known South American bat, Histiotus macrotus (Chiroptera: Vespertilionidae). Acta Chiropterol. 17: 143–158.Google Scholar
Guisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.Google Scholar
Gutiérrez, E.E., R.A. Boria and R.P. Anderson. 2014. Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossum. Ecography 37: 741–753.Google Scholar
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005a. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.Google Scholar
Hijmans, R.J., L. Guarino, P. Mathur, A. Jarvis, E. Rojas, M. Cruz and I. Barrantes. 2005b. DIVA-GIS, version 7.5.Google Scholar
Jollife, I.T. 2002. Principal component analysis, 2nd ed. Springer Series in Statistics. Spirnger-Verlag, New York. USA. pp. 487.Google Scholar
Jones, M. 1997. Character displacement in Australian dasyurid carnivores: size relationships and prey patterns. Ecology 78: 2569–2587.Google Scholar
Kelt, D. and U. Pardiñas. 2008. Lyncodon patagonicus. The IUCN Red List of Threatened Species. http://dx.doi.org/.CrossrefGoogle Scholar
Larivière, S. and A.P. Jennings. 2009. Family Mustelidae (weasels and relatives). In: (D.E. Wilson, and R.A. Mittermeier, eds.) Handbook of the mammals of the world. 1, Carnivores. Lynx Editions in association with Conservation International and IUCN. pp. 564–656.Google Scholar
Levins, R. 1968. Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton, NJ, USA. pp. 132.Google Scholar
Mackey, B.G. and D.B. Lindenmayer. 2001. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28: 1147–1166.Google Scholar
Merow, C., M.J. Smith and J.A. Silander Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069.Google Scholar
Molina, G.I. 1782. Saggio sulla storia naturale del Chili. Stamperia di Sto. Tommaso d’Aquino. Bologna, Italy.Google Scholar
Monjeau, J.A., J.A. Tort, J. Márquez, P. Jayat, B.N. Palmer Fry, S.D. Nazar Anchorena, A. Di Vicenzo and F. Polop. 2009. Latitudinal patterns of species richness distribution in South American carnivores. Mastozool. Neotrop. 16: 95–108.Google Scholar
Morrone, J.J. 2001. Biogeografía de América Latina y El Caribe. Manuales y Tesis SEA 3. Zaragoza, España. pp. 148.Google Scholar
Morrone, J.J. 2006. Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu. Rev. Entomol. 51: 467–494.Google Scholar
Myers, C.E., A.L. Stigall and B.S. Lieberman. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41: 226–244.Google Scholar
Nakazato, T., D.L. Warren and L.C. Moyle. 2010. Ecological and geographical modes of species divergence in wild tomatoes. Am. J. Bot. 97: 680–693.Google Scholar
Palomares, E. and T.M. Caro. 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153: 492–508.Google Scholar
Pearson, R.G., C.J. Raxworthy, M. Nakamura and A.T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102–117.Google Scholar
Peers, M.J.L., D.H. Thornton and D.L. Murray. 2013. Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat. Proc. R. Soc. B. 280: 20132495.Google Scholar
Petraitis, P.S. 1979. Likelihood measures of niche breadth and overlap. Ecology 60: 703–710.Google Scholar
Phillips, S.J., M. Dudík and R.E. Schapire. 2004. A maximum entropy approach to Environmental Niche Modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada. pp. 8.Google Scholar
Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231–259.Google Scholar
Prevosti, F.J. and U.F.J. Pardiñas. 2001. Variaciones corológicas de Lyncodon patagonicus (Carnivora, Mustelidae) durante el Cuaternario. Mastozool. Neotrop. 8: 21–39.Google Scholar
Prevosti, F.J., P. Teta and U.F.J. Pardiñas. 2009. Distribution, natural history, and conservation of the Patagonian weasel Lyncodon patagonicus. Small Carnivore Conserv. 41: 29–34.Google Scholar
QGIS. 2015. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.Google Scholar
Radosavljevic, A. and R.P. Anderson. 2014. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41: 629–643.Google Scholar
Reid, F. and K. Helgen. 2008. Galictis cuja. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41639A10525484.en.
Rivas, L.R. 1964. A reinterpretations of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotropic”. Syst. Zool. 13: 42–43.Google Scholar
Sade, S., J.R. Rau and J.I. Orellana. 2012. Dieta del quique (Galictis cuja Molina 1782) en un remanente de bosque valdiviano fragmentado del sur de Chile. Gayana 76: 112–116.Google Scholar
Sato, J.J., M. Wolsan, F.J. Prevosti, G. D’Elia, C. Begg, K. Begg, T. Hosoda, K.L. Campbell and H. Suzuki. 2012. Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol. Phylogenet Evol. 63: 745–757.Google Scholar
Schiaffini, M.I. 2014. Ensambles de pequeños carnívoros (Carnivora: Mustelidae y Mephitidae) en patagonia: Taxonomía, distribución y repartición trófica. Ph.D Thesis, Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, Argentina.Google Scholar
Schiaffini, M.I. and F.J. Prevosti. 2014. Trophic segregation of small carnivorans (Carnivora: Mustelidae and Mephitidae) from the southern cone of South America. J. Mammal. Evol. 21: 407–416.Google Scholar
Schiaffini, M.I., G.M. Martin, A.L. Giménez and F.J. Prevosti. 2013. Distribution of Lyncodon patagonicus (Carnivora: Mustelidae): changes from the Last Glacial Maximum to the present. J. Mammal. 94: 339–350.Google Scholar
Schoener, T.W. 1969. Models of optimal size for solitary predators. Am. Nat. 103: 277–313.Google Scholar
Sheffield, S.R. and C.M. King. 1994. Mustela nivalis. Mammal. Species 454: 1–10.Google Scholar
Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10: 1115–1123.Google Scholar
Soberón, J. and A.T. Peterson. 2005. Interpretation of niches of fundamental ecological niches and species’ distributional areas. Biodivers. Inf. 2: 1–10.Google Scholar
Soler, L. and G. Aprile. 2012. Galictis cuja (Molina). In: (R.A. Ojeda, V. Chillo and B. Díaz Isenrath, eds.) Libro rojo de mamíferos amenazados de la Argentina. Sociedad Argentina para el Estudio de los Mamíferos, Mendoza, Argentina. pp. 103.Google Scholar
Virgós, E., T. Romero and J.G. Mangas. 2001. Factors determining “gaps” in the distribution of a small carnivore, the common genet (Genetta genetta), in central Spain. Can. J. Zool. 79: 1544–1551.Google Scholar
Warren, D.L. and S.N. Siefert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21: 335–342.Google Scholar
Warren, D.L., R.E. Glor and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62-11: 2868–2883.Google Scholar
Warren, D.L., R.E. Glor, M. Turelli. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.Google Scholar
Wooten, J.A. and H.L. Gibbs. 2011. Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. J. Evolution. Biol. 25: 317–328.Google Scholar
Yensen, E. and T. Tarifa. 2003. Galictis cuja. Mammal. Species 728: 1–8.Google Scholar
Zapata, S.C., A. Travaini, M. Delibes and R. Martínez-Peck. 2005. Annual food habits of the lesser grison (Galictis cuja) at the southern limit of its range. Mammalia 69: 85–88.Google Scholar
Comments (0)