Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 82, Issue 1


Home-range size of the European wildcat (Felis silvestris silvestris): a report from two areas in Central Italy

Stefano Anile
  • Corresponding author
  • Dipartimento di Biologia Animale ‘Marcello La Greca’, Università di Catania, Catania, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lolita Bizzarri
  • Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moreno Lacrimini
  • Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Sforzi / Bernardino Ragni
  • Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastien Devillard
  • Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-02 | DOI: https://doi.org/10.1515/mammalia-2016-0045


Although the behavioural ecology of the European wildcat (Felis silvestris silvestris) has been studied in several European countries, its home-range size is still poorly known due to elusive behaviour of the species living in typically low population densities. In our study, 11 wildcats from two distinct areas, the Maremma Regional Park (Tuscany; 3 males and 1 female) and the Paradiso di Pianciano Estate (Umbria; 6 males and 1 female), both located in Central Italy, were studied by means of classical VHF radio-tracking. Home ranges were calculated by means of the Brownian bridge movement model (BBMM). Variables significantly affecting home-range size were: study area, gender and the interaction between gender*age. The potential effect of the reproductive season and the nocturnal period was not supported. The main findings indicate that: (1) home-range sizes in Tuscany were larger than those in Umbria; (2) home-range size was positively related to the age of individuals; (3) males exploited larger home ranges than females in all age-classes except for the sub-adult age-class; this latter pattern has never emerged from any previous wildcat radio-telemetry study. Population density, different management regimes in the areas considered and the local abundance of prey may explain differences in home-range sizes between the study areas. The estimated home ranges of wildcats in Umbria were slightly larger than those reported across Europe, while those calculated in the Tuscan study area were significantly greater.

This article offers supplementary material which is provided at the end of the article.

Keywords: Brownian bridge movement model (BBMM); European wildcat; general additive mixed model (GAMM); home-range; Italy; radio-tracking


  • Anile, S., B. Ragni, E. Randi, F. Mattucci and F. Rovero. 2014. Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. J. Zool. 293: 252–261.CrossrefGoogle Scholar

  • Avenant, N.L. and J.A. Nel. 1998. Home-range use, activity, and density of caracal in relation to prey density. Afr. J. Ecol. 36: 347–359.CrossrefGoogle Scholar

  • Barton, K. 2013. MuMIn: Multi-model inference. R package version 1.9.5. Available at: http://www.CRAN.R-project.org/.

  • Benson, J.F., M.J. Chamberlain and B.D. Leopold. 2006. Regulation of space use in a solitary felid: population density or prey availability? Anim. Behav. 71: 685–693.CrossrefGoogle Scholar

  • Birò, Z., L. Szemethy and M. Heltai. 2004. Home range sizes of wildcats (Felis silvestris) and feral domestic cats (Felis silvestris f. catus) in a hilly region of Hungary. Mamm. Biol. 69: 302–310.CrossrefGoogle Scholar

  • Bizzarri, L., M. Lacrimini and B. Ragni. 2010. Live capture and handling of the European wildcat in central Italy. Hystrix Ital. J. Mamm. 21: 73–82.Google Scholar

  • Cheyne, S.M., D.J. Stark, S.H. Limin and D.W. Macdonald. 2013. First estimates of population ecology and threats to Sunda clouded leopards Neofelis diardi in a peat-swamp forest, Indonesia. Endanger Species Res 22: 1–9.CrossrefGoogle Scholar

  • Corbett, L.K. 1979. Feeding ecology and social organization of wildcats (Felis silvestris) and domestic cats (Felis catus) in Scotland. PhD Thesis. University of Aberdeen, Aberdeen, UK.Google Scholar

  • Daniels, M.J., M.A. Beaumont, P.J. Johnson, D. Balharry, D.W. Macdonald and E. Barratt. 2001. Ecology and genetics of wild-living cats in the north-east of Scotland and the implications for the conservation of the wildcat. J. Appl. Ecol. 38: 146–161.CrossrefGoogle Scholar

  • Di Bitetti, M.S., A. Paviolo and C.D. De Angelo. 2006. Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J. Zool. 270: 153–163.Google Scholar

  • Germain, E., S. Benhamou and M.L. Poulle. 2008. Spatio-temporal sharing between the European wildcat, the domestic cat and their hybrids. J. Zool. 276: 195–203.CrossrefGoogle Scholar

  • Harmsen, B.J., R.J. Foster, S.C. Silver, L.E.T. Ostro and C.P. Doncaster. 2010. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76: 320–324.Google Scholar

  • Herfindal, I., J.D. Linnell, J. Odden, E.B. Nilsen and R. Andersen. 2005. Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). J. Zool. 265: 63–71.CrossrefGoogle Scholar

  • Horne, J.S., E.O. Garton, S.M. Krone and J.S. Lewis. 2007. Analyzing animal movements using Brownian bridges. Ecol. 88: 2354–2363.CrossrefGoogle Scholar

  • Jerosch, S., M. Gotz, N. Klar and R. Mechthild. 2010. Characteristics of diurnal resting sites of the endangered European wildcat (Felis silvestris silvestris): implications for its conservation. J. Nat. Conserv. 18: 45–54.CrossrefGoogle Scholar

  • Kery, M., B. Gardner, T. Stoeckle, D. Weber and J.A. Royle. 2011. Use of spatial capture-recapture modelling and DNA data to estimate densities of elusive animals. Conserv. Biol. 25: 356–364.Google Scholar

  • Klar, N., F. Néstor, S. Kramer-Schadt, M. Herrmann, M. Trinzen, I. Buttner and C. Niemitz. 2008. Habitat selection models for European wildcat conservation. Biol. Conserv. 141: 308–319.CrossrefGoogle Scholar

  • Klar, N., M. Herrmann and S. Kramer-Schadt. 2009. Effects and mitigation of road impacts on individual movement behaviour of wildcats. J. Wildl. Mgmt. 73: 631–638.CrossrefGoogle Scholar

  • Kranstauber, B., R. Kays, S.D. LaPoint, M. Wikelski and K. Kamran Safi. 2012. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81: 738–746.CrossrefPubMedGoogle Scholar

  • Lecis, R., M. Pierpaoli, Z. Birò, L. Szemethy, B. Ragni, F. Vercillo and E. Randi. 2006. Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol. Ecol. 15: 119–131.PubMedGoogle Scholar

  • Litvaitis, J., J. Sherburne and J. Bissonette. 1986. Bobcat habitat use and home range size in relation to prey density. J. Wildl. Mgmt. 50: 110–117.CrossrefGoogle Scholar

  • LOAS™. 2004. Ecological Software Solutions LLC. Version 3.0.1.Google Scholar

  • Lozano, J. and A.F. Malo. 2012. Conservation of the European wildcat (Felis silvestris) in Mediterranean environments: a reassessment of current threats. In: (G.S. Williams, ed.) Mediterranean Ecosystem: dynamics, management and conservation. Nova Science Publishers, Hauppauge, NY. pp. 1–31.Google Scholar

  • Lozano, J., E. Virgos, S. Cabezas-Diaz and J.C. Mangas. 2007. Increase of large game species in mediterranean areas: is the European wildcat (Felis silvestris) facing a new threat? Biol. Conserv. 138: 321–329.CrossrefGoogle Scholar

  • Lucherini, M., J.I. Reppucci, R.S. Walker, M.L. Villalba, A. Wurstten, G. Gallardo, A. Iriarte, R. Villalobos and P. Perovic. 2009. Activity pattern segregation of carnivores in the high Andes. J. Mammal. 90: 1404–1409.CrossrefGoogle Scholar

  • Mattucci, F., R. Oliveira, L. Bizzarri, F. Vercillo, S. Anile, B. Ragni, L. Lapini, A. Sforzi, P.C. Alves, L.A. Lyons and E. Randi. 2013. Genetic structure of wildcat (Felis silvestris) populations in Italy. Ecol. Evol. 3: 2443–2458.CrossrefGoogle Scholar

  • Monterroso, P., J.C. Brito, P. Ferreras and P.C. Alves. 2009. Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. J. Zool. 279: 27–35.CrossrefGoogle Scholar

  • Nowell, K. and P. Jackson. 1996. Status survey and conservation action plan wild cats. IUCN Publication Services Unit, Cambridge. pp. 383.Google Scholar

  • Oliveira, R., R. Godinho, E. Randi, N. Ferrand and P.C. Alves. 2008a. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian peninsula? Philos. Trans. R. Soc. Biol. Sci. 363: 2953–2961.CrossrefGoogle Scholar

  • Oliveira, R., R. Godinho, E. Randi, N. Ferrand and P.C. Alves. 2008b. Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conserv. Genet. 9: 1–11.CrossrefGoogle Scholar

  • Pesenti, E. and F. Zimmermann. 2013. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss alps. J. Mammal. 94: 73–81.CrossrefGoogle Scholar

  • Pierpaoli, M., Z.S. Birò, M. Herrmann, K. Hupe, M. Fernandes, B. Ragni, L. Szemethy and E. Randi. 2003. Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol. Ecol. 12: 2585–2598.CrossrefPubMedGoogle Scholar

  • Piñeiro, A., I. Barja, G. Silván and J. Illera. 2012. Effects of tourist pressure and reproduction on physiological stress response in wildcats: management implications for species conservation. Wildl. Res. 39: 532–539.Google Scholar

  • Ragni, B. 1981. Gatto selvatico. Felis silvestris Schreber, 1777. In: (C. Pavan, ed.) Distribuzione e biologia di 22 specie di Mammiferi in Italia. CNR, Roma (in Italian). pp. 185.Google Scholar

  • Ragni, B. 2006. Il gatto selvatico. In: (M. Frassinet and F. Petretti, eds.) Salvati dall’Arca, Airplane, Bologna (in Italian). pp. 663.Google Scholar

  • Ragni, B. and M. Possenti. 1996. Variability of coat-colour and markings system in Felis silvestris. Ital. J. Zool. 63: 285–292.CrossrefGoogle Scholar

  • Ragni, B., L. Bizzarri and A. Sforzi. 2007. Methods and problems for the reintroduction of the European wildcat: the case of the Maremma Regional Park. In: (Parco Nazionale della Majella, ed.) From the EU LIFE-projects to guidelines for the reintroduction of threatened species. Campo di Giove (in Italian). pp. 202.Google Scholar

  • Randi, E., M. Pierpaoli, M. Beaumont, B. Ragni and A. Sforzi. 2001. Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using bayesian clustering methods. Mol. Biol. Evol. 18: 1679–1693.PubMedCrossrefGoogle Scholar

  • R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org. Accessed April 16, 2014.

  • Sarmento, P., J. Cruz, P. Tarroso and C. Fonseca. 2006. Space and habitat selection by female European wildcats (Felis silvestris silvestris). Wildl. Biol. Pract. 2: 79–89.Google Scholar

  • Say, L., S. Devillard, F. Leger, D. Pontier and S. Ruette. 2012. Distribution and spatial genetic structure of European wildcat in France. Anim. Conserv. 5: 18–27.Google Scholar

  • Scott, R., N. Easterbee and D. Jefferies. 1992. A radio-tracking study of wildcats in Western Scotland. In: (Council of Europe, ed.) Proceedings of the Seminar on the biology and conservation of the wildcat (Felis silvestris). Nancy, France September 23–25, 1992.Google Scholar

  • Sforzi, A., L. Bizzarri, B. Ragni and D. Paoloni. 2010. Reconstruction of an European wildcat viable population in the Maremma Regional Park: a twenty years of experience. In: (E. Randi, B. Ragni, L. Bizzarri, N. Agostini and G. Tedaldi, eds.) Proceedings of the Felid Biology and Conservation in Italy Conference. Santa Sofia (FC) November 7–8, 2008. Ente Parco Nazionale Foreste Casentinesi (in Italian).Google Scholar

  • Soto, C.A. and F. Palomares. 2013. Surprising low abundance of European wildcats in a Mediterranean protected area of southwestern Spain. Mammalia 78: 57–65.Google Scholar

  • Stahl, P., M. Artois and M.F.A. Aubert. 1998. Organisation spatiale et déplacements des chats forestiers adultes (Felis silvestris, Schreber, 177) en Lorraine. Rev. Ecol (Terre Vie) 43: 113–132.Google Scholar

  • Teets, D.A. 2003. Predicting sunrise and sunset times. Coll. Math. J. 34: 317–321.CrossrefGoogle Scholar

  • Velli, E., M.A. Bologna, S. Castelli, B. Ragni and E. Randi. 2015. Non-invasive monitoring of the European wildcat (Felis silvestris silvestris Schreber, 1777): comparative analysis of three different monitoring techniques and evaluation of their integration. Eur. J. Wildl. Res. 61: 657–668.CrossrefGoogle Scholar

  • Wittmer, H.U. 2001. Home range size, movements, and habitat utilization of three male European wildcats (Felis silvestris Schreber, 1777) in Saarland and Rheinland-Pfalz (Germany). Mammal. Biol. 66: 365–370.Google Scholar

  • Yamaguchi, N., A. Kitchener, C. Driscoll and B. Nussberger. 2015. Felis silvestris. The IUCN Red List of Threatened Species 2015: e.T60354712A50652361.en. Available at: http://dx.doi.org/10.2305/IUCN.UK.20152.RLTS.T60354712A50652361.en Accessed November 28, 2015.

  • Zuur, A.F., E.N. Ieno, N.J. Walker, A.A Saveliev and G.M. Smith. 2009. Mixed effects models and extensions in Ecology with R. Springer, New York. pp. 574.Google Scholar

  • Zuur, A.F., E.N. Ieno and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1: 3–14.CrossrefGoogle Scholar

About the article

Received: 2016-04-10

Accepted: 2017-01-17

Published Online: 2017-03-02

Published in Print: 2017-12-20

Citation Information: Mammalia, Volume 82, Issue 1, Pages 1–11, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0045.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Teresa Oliveira, Fermín Urra, José María López-Martín, Elena Ballesteros-Duperón, José Miguel Barea-Azcón, Marcos Moléon, José María Gil-Sánchez, Paulo Celio Alves, Francisco Díaz-Ruíz, Pablo Ferreras, and Pedro Monterroso
Ecology and Evolution, 2018

Comments (0)

Please log in or register to comment.
Log in