Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 82, Issue 1


Habitat and food utilization by banteng (Bos javanicus d’Alton, 1823) accidentally introduced into the Khao Khieo-Khao Chomphu Wildlife Sanctuary, Thailand

Rattanawat Chaiyarat
  • Corresponding author
  • Wildlife and Plant Research Center, Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon, Nakhon Pathom, 73170, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suriya Saengpong / Wanchai Tunwattana / Panisa Dunriddach
Published Online: 2017-03-23 | DOI: https://doi.org/10.1515/mammalia-2016-0121


This research evaluates habitat and forage use by a reintroduced population of endangered banteng (Bos javanicus d’Alton, 1823) in Khao Khieo-Khao Chomphu Wildlife Sanctuary, Thailand based on fieldwork conducted between November 2007 and September 2009. Thirteen banteng bred in Khao Kheow Open Zoo were accidentally introduced into the Khao Khieo-Khao Chomphu Wildlife Sanctuary in 1988. Forage species were identified by fecal analysis. The results from field study of showed that the population structure ratio among adults, juveniles and calves was 1:0.5:0.3, respectively. A multiple logistic regression habitat suitability model classified banteng as associated with mixed deciduous forest and agricultural areas (cassava and coconut), at low elevation, distant from human settlements. The kernel density estimate of area use for agriculture was 0.32 km2, and for mixed deciduous forest the estimate was 10.75 km2 and 6.2 km2 in the dry and wet seasons, respectively. When the wet and dry seasons are combined, the total area use for agriculture was 0.35 km2 and for mixed deciduous forest, it was 11.40 km2. Twenty-three forage species were identified using a combination of fecal analysis and direct observation. Fecal specimens contained high levels of moisture and protein. Major risks to the feral banteng population are low genetic diversity, habitat destruction and poaching. These findings are important for possible translocations elsewhere.

Keywords: banteng; forage species; habitat selection; reintroduction


  • Adcock, K., H.B. Hansen and H. Lindemann. 1998. Lessons from the introduced black rhino population in Pilanesberg National Park. Pachyderm 26: 40–51.Google Scholar

  • Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. In: (B.N. Petrov and F. Csaki, eds.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary, pp. 267–281.Google Scholar

  • Alfred, R., L. Ambu, S.K.S.S. Nathan and B. Goossens. 2011. Current status of Asian elephants in Borneo. Gajah 35: 29–35.Google Scholar

  • Anderson, J. 1982. The home range: a new non parametric estimation technique. Ecology 63: 103–112.CrossrefGoogle Scholar

  • Anthony, R.G. and N.S. Smith. 1974. Comparison of rumen and fecal analysis to describe deer diets. J. Wildl. Manage. 38: 535–540.CrossrefGoogle Scholar

  • Araújo, M.B. and P.H. Williams. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331–345.CrossrefGoogle Scholar

  • Asaoka, R., K. Hirasawa, A. Iwase, Y. Fujino, H. Murata, N. Shoji and M. Araie. 2016. Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography. Am. J. Ophathal. 174: 95–103.Google Scholar

  • Bowman, D.M.J.S., B.P. Murphy and C.R. McMahon. 2010. Using carbon isotope analysis of the diet of two introduced Australis magaherbivores to understand Pleistocene megafaunal extinctions. J. Biogeogr. 37: 499–505.CrossrefGoogle Scholar

  • Boyce, M.S., P.R. Vernier, S.E. Nielson and F.K.A. Schmiegelow. 2002. Evaluatinf resource selection functions. Ecol. Model. 157: 281–300.CrossrefGoogle Scholar

  • Bradshaw, C.J.A., Y. Isagi, S. Kaneko, B.W. Brook, D.M.J.S. Bowman and R. Frankham. 2007. Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia. Mol. Ecol. 16: 2998–3008.CrossrefPubMedGoogle Scholar

  • Brotons, L., W. Thuiller, M.B. Araújo and A.H. Hirzel. 2004. Presence-absence versus presence-only modeling methods for predicting bird habitat suitability. Ecography 27: 437–448.CrossrefGoogle Scholar

  • Burnham, K.P. and D.R. Anderson. 2004. Multimodel inference: Understanding: AIC and BIC in model selection. Socio. Meth. Res. 33: 261–304.CrossrefGoogle Scholar

  • Carvalho, P., A.J.A. Nogueira, A.M.V.M. Soares and C. Fonseca. 2008. Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use. Mammalia 72: 89–94.Google Scholar

  • Chaiyarat, R. 2002. Forage species of wild water buffalo (Bubalus bubalis) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Buffalo J. 3: 289–302.Google Scholar

  • Chaiyarat, R. and S. Srikosamatara. 2009. Populations of domesticated cattle and buffalo in the Western Forest Complex of Thailand and their possible impacts on the wildlife community. J. Environ. Manage. 90: 1448–1453.PubMedCrossrefGoogle Scholar

  • Charles, E.K.C. and A. White. 2001. Reintroduction of bison into the Rocky Mountain parks of Canada: Historical and archaeological evidence. In: (D. Harmon, ed.) Proceedings of the 11th Conference on Research and Resource Management in Parks and on Public Lands: The George Wright Society, pp. 143–151.Google Scholar

  • Conant, S. 1988. Saving endangered species by translocation. BioScience 38: 254–257.CrossrefGoogle Scholar

  • Dobson, A.P., J.P. Rodriguez, W.M. Roberts and D.S. Wilcove. 1997. Hopes for the future: restoration ecology and conservation biology. Science 277: 515–522.CrossrefGoogle Scholar

  • Ebenhard, T. 1995. Conservation breeding as a tool for saving animal species from extinction. Trends Ecol. Evol. 10: 438–443.CrossrefPubMedGoogle Scholar

  • ESRI. 2007. ESRI® Data & Maps 2006. ESRI, NY.Google Scholar

  • Fielding, A.H. and P.F. Haworth. 1995. Testing the gernerality of bird-habitat models. Conserv. Biol. 9: 1466–1481.CrossrefGoogle Scholar

  • Gardner, P.C. 2014. The natural history, non-invasive sampling, activity patterns and population genetic structure of the Bornean Banteng Bos javanicus lowi in Sabah, Malaysian Borneo. Ph.D. Thesis, Cardiff University, Cardiff.Google Scholar

  • Gardner, P.C., S. Pudyatmoko, N. Bhumpakphan, M. Yindee, D.L.N. Ambu and B. Goossens. 2014. Banteng Bos javanicus. In: (M. Melletti and J. Burton, eds.) Ecology, evolution and behaviour of wild cattle: implications for conservation. Cambridge University Press, Cambridge.Google Scholar

  • Gardner, P., S. Hedges, S. Pudyatmoko, T.N.E. Gray and R.J. Timmins. 2016. Bos javanicus. The IUCN Red List of Threatened Species 2016: e.T2888A46362970. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T2888A46362970.en. Downloaded on 19 December 2016.

  • Gray, T.N.E., S. Prum, C. Pin and C. Phan. 2012. Distance sampling reveals Cambodia’s Eastern Plains Landscape supports largest global population of the endangered banteng Bos javanicus. Oryx 46: 563–566.CrossrefGoogle Scholar

  • Griffith, B., J.M. Scott, J.W. Carpenter and C. Reed. 1989. Translocation as a species conservation tool – status and strategy. Science 245: 477–480.CrossrefPubMedGoogle Scholar

  • Ishige, T., T. Gakuhari, K. Hanzawa, T. Kono, I. Sunjoto, J.R.A. Sukor, A.H. Ahmad and H. Matsubayashi. 2016. Complete mitochondrial genomes of the tooth of a poached Bornean banteng (Bos javanicus lowi; Cetartiodactyla, Bovidae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 27: 2453–2454.PubMedGoogle Scholar

  • Jewell, Z. and S. Alibhai. 2013. Identifying endangered species from footprints. SPIE Newsroom.Google Scholar

  • Kojola, I., T. Helle and P. Aikio. 1991. Productivity of semi-domesticated reindeer in Finland. Rangifer 11: 53–64.CrossrefGoogle Scholar

  • Lekagul, B. and J.A. McNeely. 1977. Mammals of Thailand. Association for the Conservation of Wildlife, Bangkok.Google Scholar

  • Matsubayashi, H., K. Hanzawa, T. Kono, T. Ishige, T. Gakuhari, P. Lagan, I. Sunjoto, J.R.A. Sukor, W. Sinun and A.H. Ahmad. 2014. First molecular data on Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae) from Sabah, Malaysian Borneo. Mammalia 78: 523–531.Google Scholar

  • Natural Research Council. 1983. Little-know Asian animals with a promising economic future. National Academy Press, Washington, D.C.Google Scholar

  • Peiris, H. and A. Perera. 1996. Study of the grazing behaviour and forage utilization of free range buffalo. In: (B.M.A.O. Perera, J.A. de S. Siriwardene, N.U. Horadagoda and M.N.M. Ibrahim eds.) The role of the buffalo in rural development in Asia, V.3. SAREC/NARESA Buffalo Research and Development Programme Peradenida, Sri Lanka, pp. 273–279.Google Scholar

  • Phan, C. and T.N.E. Gray. 2010. Ecology and natural history of banteng in eastern Cambodia: evidence from camera-trapping in Mondulkiri Protected Forest and Phnom Prich Wildlife Sanctuary. Cambodian J. Nat. Hist. 2: 118–126.Google Scholar

  • Prakobphon, N. 1988. Behaviour of banteng (Bos javanicus) in Chiang Mai Zoo Changwat Chiang Mai and Khao Kheow Open Zoo Changwat Chonburi. Mater Thesis, Chiang Mai University, Chiang Mai.Google Scholar

  • Prayurasiddhi, T. 1997. The ecological separation of gaur (Bos gaurus) and banteng (Bos javanicus) in Huai Kha Khaeng Wildlife Sanctuary. Dissertation, University of Minnesota, Minnesota.Google Scholar

  • Prayurasiddhi, T. 1999. A study on dietary of herbivores by fecal analysis. The Royal Forest Department, Bangkok. (In Thai).Google Scholar

  • Pudyatmoko, S., Djuwantoko and Y. Sabarno, 2007. Evidence of bateng (Bos javanicus) decline in Baluran National Park, Indonesia. J. Biol. Sci. 7: 854–859.CrossrefGoogle Scholar

  • Purwantara, B., R.R. Noor, G. Andersson and H. Rodriguez-Martinez. 2012. Banteng and Bali cattle in Indonesia: status and forecasts. Report Domes. Anim. 47(Suppl. 1): 2–6.CrossrefGoogle Scholar

  • Radanachaless, T. and J.F. Maxwell. 1994. Weeds of soybean field in Thailand. Multiple Cropping Center, Faculty of Agriculture. Chiang Mai University, Chiang Mai.Google Scholar

  • R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Robert, A., B. Colas, I. Guigon, C. Kerbiriou, J.-B. Mihoub, M. Saint-Jalme and F. Sarrazin. 2015. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Ani. Cons. 18: 397–406.CrossrefGoogle Scholar

  • Royal Forest Department. 2002. Management plan for Khao Khieo-Khao Chompu Wildlife Sanctuary, Chonburi Province (2003–2007). The Royal Forest Department, Bangkok. (in Thai).Google Scholar

  • Saijuntha, W., T. Petney and W. Kongbuntad. 2013. Genetic characterization of banteng (Bos javanicus) in Lam Pao Wildlife Conservation Development and Promotion Station, Kalasin Province. Thai J. Genet. 6: 72–76.Google Scholar

  • Sankar, K., H.S. Pabla, C.K. Patil, P. Nigam, Q. Qureshi, B. Navaneethan, M. Manjreakar, P.S. Virkar and K. Mondal. 2013. Home range, area use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6: 50–69.CrossrefGoogle Scholar

  • Sarrazin, F. and R. Barbault. 1996. Reintroduction: challenges and lessons for basic ecology. Trends Ecol. Evol. 11: 474–478.CrossrefPubMedGoogle Scholar

  • Schneider, J., D.S. Maehr, K.J. Alexy, J.J. Coxm, J.L. Larkin and B.C. Reeder. 2006. Food habits of reintroduced elk in Southeastern Kentucky. Southeast. Nat. 5: 535–546.CrossrefGoogle Scholar

  • Seaman, D.E., J.J. Millspaugh, B.J. Kernohan, G.C. Brundige, K.J. Raedeke and R.A. Gitzen. 1999. Effects of sample size on KERNEL home range estimates. J. Wildl. Manage. 63: 739–747.CrossrefGoogle Scholar

  • Shugart, H.H., N.H.F. French, E.S. Kasischke, J.J. Slawski, C.W. Dull, R.A. Shuchman and J. Mwangi. 2001. Detection of vegetation change using reconnaissance imagery. Global Change Biol. 7: 247–252.CrossrefGoogle Scholar

  • Sinha, S.P., V.B. Sawarkar and A. Tiwari. 2001. Managememt of re-introduced greater one-horned rhinoceros (Rhinoceros unicornis) in Dudhwa National Park & Tiger Reserve, Uttar Pradesh, India. Vienna: Proceedings of the International elephant and rhino research symposium: June 7–11, 2001, pp. 222–230.Google Scholar

  • Smitinand,T. 1980. Thai plant name (botanical name – vernacular names), 2nd ed. Funny Publishing Ltd, Bangkok.Google Scholar

  • Soorae, P.S. ed. 2010. Global re-introduction perspective: additional case-studies from around the globe. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi.Google Scholar

  • Srikosamatara, S. 1993. Density and biomass of large herbivores and other mammals in a drytropical forest, western Thailand. J. Trop. Ecol. 9: 33–43.CrossrefGoogle Scholar

  • Srikosamatara, S. and V. Suteethorn. 1995. Populations of gaur and banteng and their management in Thailand. Nat. Hist. Bull. Siam Soc. 43: 55–83.Google Scholar

  • Stüwe, M. and B. Nievergelt. 1991. Recovery of alpine ibex from near extinction: the result of effective protection, captive breeding, and reintroductions. Appl. Anim. Behav. Sci. 29: 379–387.CrossrefGoogle Scholar

  • Tjibae, M. 2002. Re-introduction of white rhinos to Moremi Game Reserve. Pachyderm 32: 87.Google Scholar

  • Trisurat, Y., A. Pattanavibool, G.A. Gale and D.H. Reed. 2010. Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning. Wildl. Res. 37: 401–412.CrossrefGoogle Scholar

  • Wharton, CH. 1968. Man, fire and wild cattle in Southeast Asia. Proceedings of the Annual Tall Timbers Fire Ecol. Conf. 8: 107–167.Google Scholar

  • Yusuf, M., D.P. Rahardja and A.L. Toleng. 2015. Prospect of nutrition in-utero on improvement of reproductive performance in Bali cows kept under smallholder farms. J. Adv. Agr. Tech. 2: 151–155.Google Scholar

About the article

Received: 2016-02-21

Accepted: 2017-02-14

Published Online: 2017-03-23

Published in Print: 2017-12-20

Citation Information: Mammalia, Volume 82, Issue 1, Pages 23–34, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0121.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in