Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 82, Issue 2


Exotic rats consume sporocarps of arbuscular mycorrhizal fungi in American Samoa

Gregory H. Adler / Eva Counsell / Joshua O. Seamon / Stephen P. Bentivenga
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/mammalia-2016-0135


We sampled three exotic species of rats (Rattus exulans, Rattus norvegicus and Rattus rattus) by live-trapping along two transects on Tutuila, American Samoa and searched for evidence of mycophagy by examining fecal pellets. We found spores of three species of arbuscular mycorrhizal fungi (Septoglomus constrictum, Rhizophagus clarus and Rhizophagus fasciculatus) in 19 of the 26 samples examined. All the three species of rats consumed sporocarps, with R. clarus being the most widely consumed. We suggest that mycophagy by exotic rats is common in American Samoa and may facilitate invasion of exotic plants such as the tree Falcataria moluccana.

Keywords: exotic species; island ecology; Pacific islands; Rattus; tropical forests


  • Alexander, I., N. Ahmad and L.S. See. 1992. The role of mycorrhizas in the regeneration of some Malaysian forest trees. Phil. Trans. R. Soc. Lond. 335: 379–388.CrossrefGoogle Scholar

  • Allen, M.F., C. Crisafulli, C.F. Friese and S.L. Jeakins. 1992. Re-formation of mycorrhizal symbioses on Mount St Helens, 1980–1990: interactions of rodents and mycorrhizal fungi. Mycol. Res. 96: 447–453.CrossrefGoogle Scholar

  • Amarasekare, P. 1993. Potential impact of mammalian nest predators on endemic forest birds of western Mauna Kea, Hawaii. Conserv. Biol. 7: 316–324.CrossrefGoogle Scholar

  • Atkinson, I.A.E. 1977. A reassessment of factors, particularly Rattus rattus L., that influenced the decline of endemic forest birds in the Hawaiian Islands. Pac. Sci. 31: 109–133.Google Scholar

  • Atkinson, I.A.E. 1985. The spread of the commensal species of Rattus to oceanic islands and their effects on island avifauna. Internat. Council Bird Preservation Tech. Pub. 3: 35–84.Google Scholar

  • Brundrett. 2008. Section 11: Resources. Mycorrhizal associations: the web resource. Mycorrhizas.info. Picture. Retrieved 20 Nov. 2012.Google Scholar

  • Carvajal, A. and G.H. Adler. 2005. Biogeography of mammals on tropical Pacific islands. J. Biogeogr. 32: 1561–1569.CrossrefGoogle Scholar

  • Drake, D.R. and T.L. Hunt. 2009. Invasive rodents on islands: integrating historical and contemporary ecology. Biol. Invasions 11: 1483–1487.CrossrefWeb of ScienceGoogle Scholar

  • Flannery, T. 1995. Mammals of the South-west Pacific and Moluccan Islands. Cornell Univ. Press, Ithaca, NY, USA.Google Scholar

  • Gemma, J.N. and R.E. Koske. 1990. Mycorrhizae in recent volcanic substrates in Hawaii. Am. J. Bot. 77: 1193–1200.CrossrefGoogle Scholar

  • Gianinazzi, S. and V. Gianinazzi-Pearson. 1986. Progress and headaches in endomycorrhiza biotechnology. Symbiosis 2: 139–149.Google Scholar

  • Harper, G.A. and N. Bunbury. 2015. Invasive rats on tropical islands: their population biology and impacts on native species. Global Ecol. Conserv. 3: 607–627.Web of ScienceCrossrefGoogle Scholar

  • Hynson, N.A., V.S.F.T. Merckx, B.A. Perry and K.K. Treseder. 2013. Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biol. Invasions 15: 2373–2385.Web of ScienceCrossrefGoogle Scholar

  • Janos, D.P., C.T. Sahley and L.H. Emmons. 1995. Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76: 1852–1858.CrossrefGoogle Scholar

  • Koske, R.E. and J.N. Gemma. 1990. VA mycorrhizae in vegetation of the Hawaiian coastal strand: evidence for co-dispersal of fungi and plants. Am. J. Bot. 77: 466–474.CrossrefGoogle Scholar

  • Koske, R.E., J.N. Gemma and T. Flynn. 1992. Mycotrophy in Hawaiian angiosperms: a survey with implications for the origin of the native flora. Am. J. Bot. 79: 853–862.CrossrefGoogle Scholar

  • Li, H., S. Smith, R. Holloway, Y. Shu and A. Smith. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. N. Phytol. 172: 536–543.CrossrefGoogle Scholar

  • Little, E.L. Jr. and R.G. Skolmen. 1989. Common forest trees of Hawaii. USDA Agriculture Handbook No. 679. United States Department of Agriculture Washington DC, USA.Google Scholar

  • Mangan, S.A. and G.H. Adler. 1999. Consumption of arbuscular mycorrhizal fungi by spiny rats (Proechimys semispinosus) in eight isolated populations. J. Trop. Ecol. 15: 779–790.CrossrefGoogle Scholar

  • Mangan, S.A. and G.H. Adler. 2000. Consumption of arbuscular mycorrhizal fungi by terrestrial and arboreal small mammals in a Panamanian cloud forest. J. Mammal. 81: 563–570.CrossrefGoogle Scholar

  • Mangan, S.A. and G.H. Adler. 2002. Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oceologia 131: 587–597.CrossrefGoogle Scholar

  • Miyasaka, S.C. and M. Habte. 2001. Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun. Soil Sci. Plant Anal. 32: 1101–1147.CrossrefGoogle Scholar

  • Öpik, M., A. Vanatoa, E. Vanatoa, M. Moora, J. Davison, J.M. Kalwij, Ü. Reier and M. Zobel. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N. Phytol. 188: 223–241.Web of ScienceCrossrefGoogle Scholar

  • Redecker, D., A. Schüßler, H. Stockinger, S.L. Stürmer, J.B. Morton and C. Walker. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota), Mycorrhiza 23: 515–531.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Richardson, D.M., N. Allsopp, C.M. D’Antonio, S.J. Milton and M. Rejmanek. 2000. Plant invasions – the role of mutualisms. Biol. Rev. 75:65–93.CrossrefGoogle Scholar

  • Shiels, A.B. 2011. Frugivory by introduced black rats (Rattus rattus) promotesdispersal of invasive plant seeds. Biol. Invasions 13:781–792.CrossrefGoogle Scholar

  • Shiels, A.B. and D.R. Drake. 2011. Are introduced rats (Rattus rattus) both seed predators and dispersers in Hawaii? Biol. Invasions 13:883–894.CrossrefGoogle Scholar

  • Shiels, A.B., W.C. Pitt, R.T. Sugihara and G.W. Witmer. 2014. Biology and impacts of Pacific island invasive species. 11. Rattus rattus, the black rat (Rodentia: Muridae). Pac. Sci. 68:145–184.Web of ScienceCrossrefGoogle Scholar

  • Wagner, W.L., D.R. Herbst and S.H. Sohmer. 1999. Manual of the flowering plants of Hawai’i. Vols. 1 and 2. Bishop Mus. Spec. Pub. 83.Google Scholar

  • Wood, J.R., I.A. Dickie, I.A.H.V. Moeller, D.A. Peltzer, K.I. Bonner, G. Rattray and J.M. Wilmshurst. 2015. Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J. Ecol. 103: 121–129.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-09-15

Accepted: 2017-03-08

Published Online: 2017-04-19

Published in Print: 2018-02-23

Citation Information: Mammalia, Volume 82, Issue 2, Pages 197–200, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0135.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in