Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 82, Issue 2

Issues

Estimating jaguar (Panthera onca) density in a preserved coastal area of French Guiana

Matthis Petit
  • Corresponding author
  • Office national de la chasse et de la faune sauvage, Campus agronomique, BP316, 97379 Kourou cedex, French Guiana, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Denis
  • Office national de la chasse et de la faune sauvage, Campus agronomique, BP316, 97379 Kourou cedex, French Guiana, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ondine Rux
  • Office national de la chasse et de la faune sauvage, Campus agronomique, BP316, 97379 Kourou cedex, French Guiana, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cécile Richard-Hansen
  • Office national de la chasse et de la faune sauvage, Campus agronomique, BP316, 97379 Kourou cedex, French Guiana, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rachel Berzins
  • Corresponding author
  • Office national de la chasse et de la faune sauvage, Campus agronomique, BP316, 97379 Kourou cedex, French Guiana, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-10 | DOI: https://doi.org/10.1515/mammalia-2016-0150

Abstract

Knowledge of the jaguar population is needed in French Guiana that faces an increase of human-jaguar conflicts. We carried out a camera trap survey to assess jaguar local density and home range size in a preserved coastal area of French Guiana. We ran spatially explicit capture recapture (SECR) models. In our model, the scale parameter σ, that is linked to the home range size, was larger for males (σ=3.87±0.59 SE km) than for females (σ=2.33±0.30 SE km). The assessed jaguar density was 3.22±0.87 SE ind. 100 km−2, which should be considered as an optimal density in a French Guiana coastal area.

Keywords: camera trapping; density; French Guiana; home range; Panthera onca; spatially explicit capture recapture

References

  • Balme, G. and L. Hunter. 2004. Mortality in a protected Leopard population, Phinda Private Game Reserve, South Africa: a population in decline? Ecolog. J. 6: 1–6.Google Scholar

  • Borchers, D.L. and M.G. Efford. 2008. Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64: 377–385.Web of ScienceCrossrefPubMedGoogle Scholar

  • Calhoun, J.B. and J.U. Casby. 1958. Calculation of home range and density of small mammals. No. 55. US Department of Health, Education, and Welfare, Public Health Service.Google Scholar

  • Caso, A., C. Lopez-Gonzalez, E. Payan, E. Eizirik, T. de Oliveira, R. Leite-Pitman, M. Kelly and C. Valderrama. 2008. Panthera onca. The IUCN Red List of Threatened Species 2008.Google Scholar

  • de Thoisy, B. 2016. Conservation status of the Jaguar in the Guianas, with a focus on French Guiana. In: (R.A. Medellín, A. de la Torre, H. Zarza, C. Chávez and G. Ceballos, eds.) El jaguar en el Siglo XXI; La Perspectiva continental. FCE, UNAM, Instituto de Ecología, Mexico, pp. 303–318.Google Scholar

  • de Thoisy, B., C. Richard-Hansen, B. Goguillon, P. Joubert, J. Obstancias, P. Winterton and S. Brosse. 2010. Rapid evaluation of threats to biodiversity: human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19: 1567–1584.CrossrefWeb of ScienceGoogle Scholar

  • Efford, M.G. 2004. Density estimation in live‐trapping studies. Oikos 106: 598–610.CrossrefGoogle Scholar

  • Efford, M.G. 2016. secr: spatially explicit capture-recapture models. R package version 2.10.2.Google Scholar

  • Gehrt, S.D. and E.K. Fritzell. 1998. Resource distribution, female home range dispersion and male spatial interactions: group structure in a solitary carnivore. Anim. Behav. 55: 1211–1227.CrossrefGoogle Scholar

  • Gerber, B.D., S.M. Karpanty and M.J. Kelly. 2012. Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul. Ecol. 54: 43–54.Web of ScienceCrossrefGoogle Scholar

  • Gittleman, J.L. and P.H. Harvey. 1982. Carnivore home-range size, metabolic needs and ecology. Behav. Ecol. Sociobiol. 10: 57–63.CrossrefGoogle Scholar

  • Goodrich, J.M., L.L. Kerley, E.N. Smirnov, D.G. Miquelle, L. McDonald, H.B. Quigley, M.G. Hornocker and T. McDonald. 2008. Survival rates and causes of mortality of Amur tigers on and near the Sikhote-Alin Biosphere Zapovednik. J. Zool. 276: 323–329.CrossrefWeb of ScienceGoogle Scholar

  • Harmsen, B.J., R.J. Foster, S. Silver, L. Ostro and C.P. Doncaster. 2010. Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133.Web of ScienceCrossrefGoogle Scholar

  • Higgins, P.A.T. 2007. Biodiversity loss under existing land use and climate change: an illustration using northern South America. Glob. Ecol. Biogeogr. 16: 197–204.CrossrefWeb of ScienceGoogle Scholar

  • Jędrzejewski, W., M.F. Puerto, J.F. Goldberg, M. Hebblewhite, M. Abarca, G. Gamarra, L.E. Calderón, J.F. Romero, Á.L. Viloria, R. Carreño and H.S. Robinson. 2017. Density and population structure of the jaguar (Panthera onca) in a protected area of Los Llanos, Venezuela, from 1 year of camera trap monitoring. Mamm. Res. 62: 9–19.CrossrefGoogle Scholar

  • Kwata. 2013. Etude des carnivores sur la réserve naturelle nationale des Nouragues: le jaguar. p. 19. http://www.kwata.net/medias/images/upload/Rapport%20DEAL_Carnivores%20_ 2012.pdf.

  • Lindstedt, S.L., B.J. Miller and S.W. Buskirk. 1986. Home range, time, and body size in mammals. Ecology 67: 413–418.CrossrefGoogle Scholar

  • Lucherini, M., J.I. Reppucci, R.S. Walker, M.L. Villalba, A. Wurstten, G. Gallardo, A. Iriarte, R. Villalobos and P. Perovic. 2009. Activity pattern segregation of carnivores in the high Andes. J. Mammal. 90: 1404–1409.CrossrefWeb of ScienceGoogle Scholar

  • Noss, A.J., B. Gardner, L. Maffei, E. Cuéllar, R. Montaño, A. Romero‐Muñoz, R. Sollman and A.F. O’Connell. 2012. Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape. Anim. Conserv. 15: 527–535.CrossrefWeb of ScienceGoogle Scholar

  • Obbard, M.E., E.J. Howe and C.J. Kyle. 2010. Empirical comparison of density estimators for large carnivores. J. Appl. Ecol. 47: 76–84.CrossrefWeb of ScienceGoogle Scholar

  • ONF Guyane 2013. Expertise littorale 2011.Google Scholar

  • Polisar, J., I. Maxit, D. Scognamillo, L. Farrell, M.E. Sunquist and J.F. Eisenberg. 2003. Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biol. Conserv. 109: 297–310.CrossrefGoogle Scholar

  • R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar

  • Sandell, M. 1989. The Mating Tactics and Spacing Patterns of Solitary Carnivores. In: (J.L. Gittleman, ed.) Carnivore behavior, ecology, and evolution. Chapman and Hall Ltd, London, pp. 164–182.Google Scholar

  • Sanderson, E.W., K.H. Redford, C.L.B. Chetkiewicz, R.A. Medellin, A.R. Rabinowitz, J.G. Robinson and A.B. Taber. 2002. Planning to save a species: the jaguar as a model. Conserv. Biol. 16: 58–72.CrossrefGoogle Scholar

  • Schaller, G.B. 1972. The serengeti lion a study of predator-prey relations. University of Chicago Press, Chicago.Google Scholar

  • Smith, J.L.D. 1993. The role of dispersal in structuring the chitwan tiger population. Behaviour 124: 165–195.CrossrefGoogle Scholar

  • Sollmann, R., M.M. Furtado, B. Gardner, H. Hofer, A.T. Jácomo, N.M. Tôrres and L. Silveira. 2011. Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Conserv. 144: 1017–1024.Web of ScienceCrossrefGoogle Scholar

  • Thompson, C.L. 2011. Intraspecific killing of a male ocelot. Mammal. Biol. 76: 377–379.CrossrefGoogle Scholar

  • Tobler, M.W. 2014. Camera base version 1.6.1 http://www.atrium-biodiversity.org/tools/camerabase/.

  • Tobler, M.W. and G.V.N. Powell. 2013. Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biol. Conserv. 159: 109–118.CrossrefWeb of ScienceGoogle Scholar

  • Tobler, M.W., S.E. Carrillo-Percastegui, A.Z. Hartley and G.V. Powell. 2013. High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. Biol. Conserv. 159: 375–381.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-10-13

Accepted: 2017-04-04

Published Online: 2017-05-10

Published in Print: 2018-02-23


Citation Information: Mammalia, Volume 82, Issue 2, Pages 188–192, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0150.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in