Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 82, Issue 2


Age-related fecundity of free-ranging mule deer Odocoileus hemionus Cervidae in south-central, New Mexico, USA

Louis C. Bender
  • Corresponding author
  • Extension Animal Sciences and Natural Resources, New Mexico State University, P.O. Box 30003 MSC 3AE, Las Cruces, NM, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brock D. Hoenes
Published Online: 2017-05-03 | DOI: https://doi.org/10.1515/mammalia-2016-0166


Mule deer Odocoileus hemionus (Rafinesque 1817) populations in southern New Mexico have declined significantly since the 1980s, similar to trends across the arid Southwestern USA. Because production of fawns is critical to population growth, we evaluated factors influencing fecundity in two mule deer populations in southern New Mexico. Conception, litter size and survival of ≥1 fawn to weaning were all affected by maternal age, with older (age 8 and older) females exhibiting reproductive senescence as compared to prime-aged (age 2–7) females for the latter two traits despite achieving similar condition as did prime-aged females. Litter size and survival to weaning were also positively affected by increasing spring precipitation and survival to weaning was also positively affected by increased maternal condition, and size during late gestation. Unlike most previous work, reproductive senescence was evident in mule deer in our study populations, possibly because deer in both populations were in poor condition and older females produced on average 0.24 (95% CI=0.10–0.42) fawns through weaning compared to 0.76 (95% CI=0.60–0.94) for prime-aged females. The positive effect of precipitation during gestation on litter size and fawn survival also indicated that both income (i.e. nutritional intake) and capital (i.e. body reserves) were important determinants of fecundity in our arid Southwestern populations. The relatively early onset of senescence compared to the lifespan of female mule deer indicates that more intensive management of female age structure may be necessary to enhance population-level productivity.

Keywords: age; conception; condition; fecundity; mule deer; Odocoileus hemionus; reproduction


  • Andelt, W.F., T.M. Pojar and L.W. Johnson. 2004. Long-term trends in mule deer pregnancy and fetal rates in Colorado. J. Wildl. Manage. 68: 542–549.CrossrefGoogle Scholar

  • Anderson, A.E. 1981. Morphological and physiological characteristics. In: (O.C. Wallmo, ed.) Mule and black-tailed deer of North America. University of Nebraska Press, Lincoln. pp. 27–97.Google Scholar

  • Bender, L.C. 2006. Uses of herd composition ratios in ungulate management. Wildl. Soc. Bull. 34: 1225–1230.CrossrefGoogle Scholar

  • Bender, L.C. 2008. Age structure and population dynamics. In: (S.E. Jorgensen and B.D. Fath, eds.) Encyclopedia of ecology, 1st ed., Vol. 1. Elsevier B.V., Oxford, England, UK. pp. 65–72.Google Scholar

  • Bender, L.C. and B.D. Hoenes. 2017. Costs of lactation to body condition and future reproduction of free-ranging mule deer Odocoileus hemionus (Cervidae). Mammalia 81: 329–337.Google Scholar

  • Bender, L.C., G.J. Roloff and J.B. Haufler. 1996. Evaluating confidence intervals for habitat suitability models. Wildl. Soc. Bull. 24: 347–352.Google Scholar

  • Bender, L.C., L.A. Lomas and J. Browning. 2007. Condition, survival, and cause-specific mortality of mule deer in northcentral New Mexico. J. Wildl. Manage. 71: 1118–1124.CrossrefGoogle Scholar

  • Bender, L.C., J.C. Boren, H. Halbritter and S. Cox. 2011. Condition, survival, and productivity of mule deer in semiarid grassland-woodland in east-central New Mexico. Human-Wildl. Interact. 5: 276–286.Google Scholar

  • Bender, L.C., B.D. Hoenes and C.L. Rodden. 2012. Factors influencing survival of desert mule deer in the greater San Andres Mountains, New Mexico. Human-Wildl. Interact. 6: 245–260.Google Scholar

  • Bishop, C.J. 2007. Effect of enhanced nutrition during winter on the Uncompaghre Plateau mule deer population. Ph.D. dissertation, Colorado State University, Ft. Collins.Google Scholar

  • Bishop, C.J., G.C. White, D.J. Freddy, B.E. Watkins and T.R. Stephenson. 2009. Effect of enhanced nutrition on mule deer population rate of change. Wildl. Monogr. No. 172: 1–28.CrossrefGoogle Scholar

  • Brown, E.R. 1961. The black-tailed deer of western Washington. Biological Bulletin 13. Washington Department of Game, Olympia.Google Scholar

  • Burnham, K.P. and D.R. Anderson. 1998. Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York.Google Scholar

  • Carstensen, M., G.D. Delgiudice, B.A. Sampson and D.W. Kuehn. 2009. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manage. 73: 175–183.CrossrefGoogle Scholar

  • Connolly, G.E. 1981. Assessing populations. In: (O.C. Wallmo, ed.) Mule and black-tailed deer of North America. University of Nebraska Press, Lincoln. pp. 287345.Google Scholar

  • Cook, R.C. 2000. Studies of body condition and reproductive physiology in Rocky Mountain elk. M.S. thesis, University of Idaho, Moscow.Google Scholar

  • Efron, B. and R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman & Hall, New York.Google Scholar

  • Gaillard, J.-M., M. Festa-Bianchet, N.G. Yoccoz, A. Loison and C. Toigo. 2000. Temporal variation in fitness components and population dynamics of large herbivores. Ann. Rev. Ecol. System. 31: 367–393.CrossrefGoogle Scholar

  • Gill, R.B. 1971. Middle Park deer study–productivity and mortality. Colorado Division of Wildlife, Federal Aid in Wildlife Restoration Job Progress Report, Project W-38-R-25. Denver, Colorado.Google Scholar

  • Hamlin, K.L., D.F. Pac, C.A. Sime, R.M. DeSimone and G. L. Dusek. 2000. Evaluating the accuracy of ages obtained by two methods for Montana ungulates. J. Wildl. Manage. 64: 441–449.CrossrefGoogle Scholar

  • Heard, D., S. Barry, G. Watts and K. Child. 1997. Fertility of female moose (Alces alces) in relation to age and body composition. Alces 33: 165–176.Google Scholar

  • Heffelfinger, J. 2006. Deer of the Southwest: a complete guide to the natural history, biology, and management of Southwestern mule deer and white-tailed deer. Texas A&M University, College Station.Google Scholar

  • Heffelfinger, J.R., L.H. Carpenter, L.C. Bender, G. Erickson, M.D. Kirchoff, E.R. Loft and W.M. Glasgow. 2003. Ecoregional differences in population dynamics. In: (J.C. deVos, Jr., M.R. Conover and N.E. Headrick, eds.) Mule deer conservation: issues and management strategies. Jack H. Berryman Press, Logan, Utah. pp. 63–90.Google Scholar

  • Hewison, A.J.M. and J.M. Gaillard. 2001. Phenotypic quality and senescence affect different components of reproductive output in roe deer. J. Anim. Ecol. 70: 600–608.CrossrefGoogle Scholar

  • Hoenes, B. 2008. Identification of factors limiting desert mule deer populations in the greater San Andres Mountains of south-central New Mexico. M.S. thesis, New Mexico State University, Las Cruces.Google Scholar

  • Hoenes, B.D., and L.C. Bender. 2012. Factors influencing foraging habitats of desert mule deer in the greater San Andres Mountains, New Mexico. Southwest. Nat. 57: 370–379.CrossrefGoogle Scholar

  • Hosmer, D.W. and S. Lemeshow. 1989. Applied logistic regression. John Wiley and Sons, New York.Google Scholar

  • Johnstone-Yellin, T.L., L.A. Shipley, W.L. Myers and H.S. Robinson. 2009. To twin or not to twin? Trade-offs in litter size and fawn survival in mule deer. J. Mammal. 90: 453–460.CrossrefGoogle Scholar

  • Kemp, P.R. 1983. Phenological patterns of Chihuahuan desert plants in relation to the timing of water availability. J. Ecol. 71: 427–436.CrossrefGoogle Scholar

  • Kuss, O. 2004. How to use SAS for logistic regression with correlated data. Paper 261-27, SAS Users Group International, Cary, North Carolina.Google Scholar

  • Lomas, L.A. and L.C. Bender. 2007. Survival and cause-specific mortality of neonatal mule deer fawns in northcentral New Mexico. J. Wildl. Manage. 71: 884–894.CrossrefGoogle Scholar

  • Marshal, J.P., P.R. Krausman and V.C. Bleich. 2008. Body condition of mule deer in the Sonoran Desert is related to rainfall. Southwest. Nat. 53: 311–318.CrossrefGoogle Scholar

  • Mautz, W.W. 1976. Sledding on a brushy hillside: the fat cycle in deer. Wildl. Soc. Bull. 6: 88–90.Google Scholar

  • McKinney, T. 2003. Precipitation, weather, and mule deer. In: (J.C. deVos, Jr., M.R. Conover, and N.E. Headrick, eds.) Mule deer conservation: issues and management strategies. Jack H. Berryman Press, Logan, Utah. pp. 219–237.Google Scholar

  • Monteith, K.L., V.C. Bleich, T.R. Stephenson, B.M. Pierce, M.M. Conner, J.G. Kie and R.T. Bowyer. 2014. Life-history traits of mule deer: effects of nutrition in a variable environment. Wildl. Monogr. 186: 1–62.CrossrefGoogle Scholar

  • Morrison, D.F. 1990. Multivariate statistical methods, 3rd ed. McGraw-Hill, New York.Google Scholar

  • Nussey, D.H., L.E.B. Kruuk, A. Donald, M. Fowlie and T. H. Clutton-Brock. 2006. The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol. Lett. 9: 1342–1350.CrossrefGoogle Scholar

  • Ozoga, J.J. 2000. John Ozoga’s whitetail intrigue: scientific insights for white-tailed deer hunters. Krause Publications, Iona, Wisconsin.Google Scholar

  • Ozoga, J.J. and L.J. Verme. 1982. Physical and reproductive characteristics of a supplementally-fed white-tailed deer herd. J. Wildl. Manage. 46: 281–301.CrossrefGoogle Scholar

  • Parsons, L.D. 1975. Status of mule deer research in Texas. Texas Parks and Wildlife, Austin.Google Scholar

  • Piasecke, J.R. 2006. Relationships among condition, health, and reproduction in free-ranging elk (Cervus elaphus) populations throughout the United States. M.S. thesis, New Mexico State University, Las Cruces.Google Scholar

  • Piasecke, J.R., L.C. Bender and S.M. Schmitt. 2009. Factors affecting pregnancy in free-ranging elk in Michigan. Canad. Field-Nat. 123: 230–235.CrossrefGoogle Scholar

  • Plotka, E.D., U.S. Seal, L.J. Verme and J.J. Ozoga. 1977. Reproductive steroids in the white-tailed deer (Odocoileus virginianus borealis). II. Progesterone and estrogen levels in peripheral plasma during pregnancy. Biol. Reprod. 17: 78–83.CrossrefPubMedGoogle Scholar

  • Robinette, W.L., D.A. Jones, G. Rogers and J.S. Gashwiler. 1957. Notes on tooth development and wear of Rocky Mountain deer. J. Wildl. Manage. 21: 134–153.CrossrefGoogle Scholar

  • Robinette, W.L., C.H. Baer, R.E. Pillmore and C.E. Knittle. 1973. Effects of nutritional change on captive mule deer. J. Wildl. Manage. 37: 312–326.CrossrefGoogle Scholar

  • Robinette, W.L., N.V. Hancock and D.A. Jones. 1977. The Oak Creek mule deer herd in Utah. Resource Publication 77-15. Utah Division of Wildlife, Salt Lake City, Utah.Google Scholar

  • Smith, R.H. and A. Lecount. 1979. Some factors affecting survival of desert mule deer. J. Wildl. Manage. 43: 657–665.CrossrefGoogle Scholar

  • Stephenson, T.R., J.W. Testa, G.P. Adams, R.G. Sasser, C.C. Schwartz and K. J. Hundertmark. 1995. Diagnosis of pregnancy and twinning in moose by ultrasonography and serum assay. Alces 31: 167–172.Google Scholar

  • Stephenson, T.R., V.C. Bleich, B.M. Pierce and G.P. Mulcahy. 2002. Validation of mule deer body composition using in vivo and post-mortem indices of nutritional condition. Wildl. Soc. Bull. 30: 557–564.Google Scholar

  • Thomas, D.C. 1983. Age-specific fertility of Columbian black-tailed deer. J. Wildl. Manage. 47: 501–506.CrossrefGoogle Scholar

  • Tollefson, T.N., L.A. Shipley, W.L. Myers, D.H. Keisler and N. Dasgupta. 2010. Influence of summer-autumn nutrituion on body condition and reproduction in lactating mule deer. J. Wildl. Manage. 74: 974–986.CrossrefGoogle Scholar

  • Unsworth, J.W., D.F. Pac, G.C. White and R. M. Bartmann. 1999. Mule deer survival in Colorado, Idaho, and Montana. J. Wildl. Manage. 63: 315–326.CrossrefGoogle Scholar

  • Verme, L.J. 1969. Reproductive patterns of white-tailed deer related to nutritional plane. J. Wildl. Manage. 33: 881–887.CrossrefGoogle Scholar

  • Verme, L.J. and D.E. Ullrey. 1984. Physiology and nutrition. In: (L.K. Halls, ed.) White-tailed deer: ecology and management. Stackpole Books, Harrisburg, Pennsylvania. pp. 91–118.Google Scholar

  • Wakeling, B.F. and L.C. Bender. 2003. Influence of nutrition on mule deer biology and ecology. In: (J.C. deVos, Jr., M.R. Conover and N.E. Headrick, eds.) Mule deer conservation: issues and management strategies. Jack H. Berryman Press, Logan, Utah. pp. 93–116.Google Scholar

  • Weber, B.J., M.L. Wolfe and G.C. White. 1982. Use of serum progesterone levels to detect pregnancy in elk. J. Wildl. Manage. 46: 835–838.CrossrefGoogle Scholar

  • Zar, J.H. 1996. Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ, USA.Google Scholar

About the article

Received: 2016-11-22

Accepted: 2017-03-29

Published Online: 2017-05-03

Published in Print: 2018-02-23

Citation Information: Mammalia, Volume 82, Issue 2, Pages 124–132, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0166.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in