Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 82, Issue 2

Issues

Seasonal variation of bat-flies (Diptera: Streblidae) in four bat species from a tropical dry forest

Valeria B. Salinas-Ramos
  • Corresponding author
  • Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, Ciudad de México, C. P. 04510, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Zaldívar-Riverón
  • Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C. P. 04510, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Rebollo-Hernández
  • Laboratorio de Acarología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, C. P. 04510, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Gerardo Herrera-M
  • Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 21, San Patricio, C. P. 48980, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-25 | DOI: https://doi.org/10.1515/mammalia-2016-0176

Abstract

Seasonality of climate promotes differences in abundance and species composition of parasites, affecting host-parasite interactions. Studies have reported seasonal variation in bat-flies, which are obligate bat ectoparasites. We characterized the bat-fly load of three insectivores [Pteronotus davyi (Gray), Pteronotus parnellii (Gray) and Pteronotus personatus (Wagner)] and one nectarivorous [Leptonycteris yerbabuenae (Martínez and Villa-R.)] bat species in a tropical dry forest to test the existence of seasonality in response to the availability of resources during the wet and dry seasons. We collected 3710 bat-fly specimens belonging to six species and two genera from 497 bats. Most of the ectoparasite load parameters examined (mean abundance, mean intensity, richness, etc.), including comparisons among reproductive conditions and sex of the host, were similar in both seasons. Prevalence was the parameter that varied the most between seasons. The six bat-fly species were found in all bat species except P. personatus. The latter species and L. yerbabuenae had four and five bat-fly species in the wet and dry seasons, respectively. This study provides significant information of ectoparasites ecology in relation to seasonality, contributes to the understanding of host-parasite relationships in tropical dry forests and discusses the relevance of the abiotic and biotic factors that could impact host-parasite interactions.

Keywords: Chiroptera; ectoparasites; Mormoopidae; Phyllostomidae; seasonality; Streblidae

References

  • Anderson, R.M. and R.M. May. 1978. Regulation and stability of host-parasite population interactions I. Regulatory processes. J. Anim. Ecol. 47: 219–247.CrossrefGoogle Scholar

  • Antoniazzi, L.R.D., E. Manzoli, D. Rohrmann, M.J. Silvestri and P.M. Beldomenico. 2010. Climate variability affects the impact of parasitic flies on Argentinean forest birds. J. Zool. 283: 126–134.Google Scholar

  • Arneberg P., A. Skorping, B. Grenfell and A.F. Read. 1998. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. London Ser. B 265: 1283–1289.CrossrefGoogle Scholar

  • Barrientos, M.A. 2012. Prevalencia y derminación de ectoparásitos en murciélagos (Chiroptera) y Roedres (Rodentia) en dos localidades de la mixteca poblana: Santo Domingo Tonahuixtla y Teotlalco Puebla, México. Master Thesis. pp. 141.Google Scholar

  • Beldomenico, P.M. and M. Begon. 2010. Disease spread, susceptibility and onfection intensity: vicious circles? Trends Ecol. Evol. 25: 21–27.Google Scholar

  • Blanco, G. and O. Frías. 2001. Symbiotic feather mites synchronize dispersal and population growth with host sociality and migratory disposition. Ecography 24: 113–120.CrossrefGoogle Scholar

  • Blanco, G., J.L. Tella and J. Potti. 1997. Feather mites on group-living Red-billed Choughs: a non-parasitic interaction? J. Avian Biol. 28: 197–206.CrossrefGoogle Scholar

  • Bortolus, A. 2008. Error cascades in the biological science: the unwanted consequences of using bad taxonomy in ecology. Ambio. 37: 114–118.PubMedCrossrefGoogle Scholar

  • Bullock, S.H. 1995. Plant reproduction in neotropical dry forest. In: (S.H. Bullock, H.A. Mooney and E. Medina, eds.) Seasonally dry tropical forests. Cambridge University Press, Cambridge, UK. pp. 277–303.Google Scholar

  • Ceballos, G., T.H. Fleming, C. Chávez and J. Nassar. 1997. Population dynamics of Leptonycteris curasoae (Chiroptera: Phyllostonidae) in Jalisco, Mexico. J. Mammal. 78: 1220–1230.CrossrefGoogle Scholar

  • Ceccarelli, F.S., M.J. Sharkey and A. Zaldívar-Riverón. 2012. Species identification in the taxonomically neglected, highly diverse, Neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach. Mol. Phylogenet. Evol. 62: 485–495.CrossrefPubMedGoogle Scholar

  • Chilton, G., M.J. Vonhofter, B.V. Peterson and N. Wilson. 2000. Ectoparasitic insects of bats in British Columbia, Canada. J. Parasitol. 86: 191–192.CrossrefPubMedGoogle Scholar

  • Christe, P., R. Arlettaz and P. Vogel. 2000. Variation in intensity of a parasitic mite (Spinturnix myotis) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol. Lett. 3: 207–212.CrossrefGoogle Scholar

  • Dawson, R.D. and G.R. Bortolotti. 1997. Ecology of parasitism of nestling American Kestrels by Carnus hemapterus (Diptera: Carnidae). Can. J. Zool. 75: 2021–2026.CrossrefGoogle Scholar

  • Dexter, K.G., T.D. Pennington and C.W. Cunningham. 2010. Using DNA to assess errors in tropical tree identifications: how often are ecologists wrong and when does it matter? Ecol. Monogr. 80: 267–286.CrossrefGoogle Scholar

  • Dick, C.W. and B.D. Patterson. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37: 871–876.CrossrefPubMedGoogle Scholar

  • Dietsch, T.V. 2005. Seasonal variation of infestation by ectoparasitic chigger mite larvae (Acarina: Trombiculidae) on resident and migratory birds in coffee agroecosystems of Chiapas, Mexico. J. Parasitol. 91: 1294–1303.PubMedCrossrefGoogle Scholar

  • Fagir, D.M., I.G. Horak, E.A. Ueckermann, N.C. Bennett and H. Lutermann. 2015. Ectoparasite diversity in the eastern rock sengis (Elephantulus myurus): the effect of seasonality and host sex. Afr. Zool. 50: 109–117.CrossrefGoogle Scholar

  • Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3: 294–299.Google Scholar

  • Gotz, F., R. Harf, S. Sommer and S. Matthee. 2010. Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa-implications for possible shifts in infestation patterns due to global changes. Oikos 119: 1029–1039.CrossrefGoogle Scholar

  • Gray, J.S., H. Dautel, A. Estrada-Peña, O. Kahl and E. Lindgren. 2009. Effects of climate change in ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect Dis. 2009: 593232.Google Scholar

  • Guerrero, R. 1993. Catalogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos (Mammalia: Chiroptera) del Nuevo Mundo. I. Clave para los generos y Nycterophilinae. Acta Biologica Venezuelica 14: 61–75.Google Scholar

  • Hart, B.L. and P.A. Pryor. 1992. Developmental and hair-coat determinants of grooming behavior in goats and sheep. Anim. Behav. 67: 11–19.Google Scholar

  • Hawlena, H., B.R. Krasnov, Z. Abramsky, I.S. Khokhlova, D. Saltz, M. Kam, A. Tamir, and A.A. Degen. 2006. Flea infestation and energy requirements of rodent hosts: are there general rules? Funct. Ecol. 20: 1028–1036.CrossrefGoogle Scholar

  • Hebert, P.D.N., A. Cywinska, S.L. Ball and J.R. DeWaard. 2003a. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270: 313–321.CrossrefGoogle Scholar

  • Hebert, P.D.N., S. Ratnasingham and J.R. deWaard. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci. 270: S96–S99.Google Scholar

  • Hill, M. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossrefGoogle Scholar

  • Hudson, P.J., I.M. Cattadori, B. Boag and A.P. Dobson. 2006. Climate disruption and parasite-host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. J. Helminthol. 80: 175–182.PubMedCrossrefGoogle Scholar

  • Jirón-Porras, L.F. and F. Fallas-Barrantes. 1974. Presence of a new representer of the genus Nycterophilia Ferris, 1916 (Dipera: Streblidae) in Costa Rica. 22: 67–70.Google Scholar

  • Jost, L. 2006. Entropy and diversity. Oikos 113: 363–375.CrossrefGoogle Scholar

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 6: 111–120.Google Scholar

  • King, K.C., J.D. McLaughlin, A.D. Gendron, B.D. Pauli, I. Giroux, B. Rondeau, M. Boily, P. Juneau and D.J. Marcogliese. 2007. Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology 134: 2063–2080.PubMedGoogle Scholar

  • Klukowski, M. 2004. Seasonal changes in abundance of host-seeking chiggers (Acari: Trombiculidae) and infestation on fence lizards, Sceloporus undulates. J. Herpetol. 38: 141–144.CrossrefGoogle Scholar

  • Komeno, C. and A.X. Linhares. 1999. Batflies parasitic on some phyllostomid bats in southeastern Brazil: parasitism rates and host–parasite relationships. Mem. Inst. Oswaldo Cruz, Rio de Janeiro 94: 151–156.CrossrefGoogle Scholar

  • Lareschi, M. and B.R. Krasnov. 2010. Determinants of ectoparasite assemblage structure on rodent hosts from South American marshlands: the effect of host species, locality and season. Med. Vet. Entomol. 24: 284–292.PubMedGoogle Scholar

  • Lehmann, T. 1993. Ectoparasites: direct impact on host fitness. Parasitol. Today 9: 8–13.CrossrefPubMedGoogle Scholar

  • Levings, S.C and D.M. Windsor. 1982. Seasonal and annual variation in litter arthropod populations. In: (E.G.Leigh, A.S. Rand and D.M. Windsor, eds.) The ecology of a tropical forest. Smithsonian Institution Press, Washington D.C. pp. 355–387.Google Scholar

  • Lourenço, S.I. and J.M. Palmeirim. 2008. Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitol. Res. 104: 127–134.Google Scholar

  • Lučan, R.K. 2006. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera:Vespertilionidae): seasonal, sex and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behavior. Folia Parasitol. 53: 147–152.PubMedGoogle Scholar

  • Luguterah, A. and E.A. Lawer. 2015. Effect of dietary guild (frugivory and insectivory) and other host characteristics on ectoparasites abundance (mite and nycteribiid) of chiropterans. Folia Parasitol. 62: 1–21.Google Scholar

  • Lumbad, A.S., L.K. Vredevoe and E.N.Taylor. 2011. Season and sex of host affect intensities of ectoparasites in western fence lizards (Sceloporus occidentalis) on the Central Coast of California. Southwest. Nat. 56: 369–377.CrossrefGoogle Scholar

  • MacArthur, R.H. 1965. Patterns of species diversity. Biol. Rev. 40: 510–533.CrossrefGoogle Scholar

  • Marcogliese, D.J. 2001. Implications of climate change for parasitism of animals in the aquatic environment. Can. J. Zool. 79: 1331–1352.CrossrefGoogle Scholar

  • Marshall, A.G. 1981. The ecology of ectoparasitic insects. Academic Press, London. pp. 459.Google Scholar

  • Mas-Coma, S., M.A. Valero and M.D. Bargues. 2008. Effects of climate change on animal and zoonotic helminthiases. In: (S. de la Rocque, G. Hendrickx and S. Morand, eds.) Climate change: impact on the epidemiology and control of animal diseases. Rev. Sci. Tech. Off. Int. Epiz. 27: 443–458.Google Scholar

  • May, R.M. and R.M Anderson. 1978. Regulation and stability of host-parasite population interactions II. Destabilizing processes. J. Anim. Ecol. 47: 249–267.CrossrefGoogle Scholar

  • McLean, J.A. and J.R. Speakman. 1997. Non-nutritional maternal support in the brown long-eared bat. Anim. Behav 54: 1193–204.PubMedCrossrefGoogle Scholar

  • Méndez-Alonzo, R., F. Pineda-García, H. Paz, J.A. Rosell and M.E. Olson. 2013. Leaf phenology is associated with soil water availability and xylem traits in tropical dry forest. Trees 27: 745–754.CrossrefGoogle Scholar

  • Merino, S. and J. Potti. 1996. Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 19: 107–113.CrossrefGoogle Scholar

  • Miller, C. 2014. Host speficity and ectoparasite load of bat flies in Utila, Honduras. Senior Honors Theses. University of New Orleans. pp. 63.Google Scholar

  • Moura, M.O., M.O. Bordignon and G. Graciolli. 2003. Host characteristics do not affect community structure of ectoparasites on the fishing bat Noctilio leporinus (L., 1758) (Mammalia: Chiroptera). Mem. Inst. Oswaldo Cruz, Rio de Janeiro 98: 811–815.CrossrefGoogle Scholar

  • Mouritsen, K.N. and R. Poulin. 2002. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124: 101–117.Google Scholar

  • Moyer, B.R., D.M. Drown and D.H. Clayton. 2002. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97: 223–228.CrossrefGoogle Scholar

  • Mysterud, A., L. Qviller, E.L. Meisingset and H. Viljugrein. 2016. Parasite load and seasonal migration in red deer. Oecologia. 180: 401–407.CrossrefGoogle Scholar

  • Palacios-Vargas, J.G., G. Castaño-Meneses, J.A. Gómez-Anaya, A. Martínez-Yrizar, B.E. Mejía-Recamier and J. Martínez-Sánchez. 2007. Litter and soil arthropods diversity and density in a tropical dry forest ecosystem in Western Mexico. Biodivers. Conserv. 16: 3703–3717.CrossrefGoogle Scholar

  • Pescador-Rubio, A., A. Rodriguez-Palafox, F.A. Noguera. 2002. Diversidad y estacionalidad de Arthropoda. In: (F.A. Noguera, R.J.H. Vega, A.A.N. García and A.M. Quesada, eds.) Historia Natural de Chamela. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico. pp. 183–201.Google Scholar

  • Pilosof, S., C.W. Dick, C. Korine, B.D. Patterson and B.R. Krasnov. 2012. Effects of anthropogenic disturbance and climate patterns of bat fly parasitism. PLoS One 7: 1–7.Google Scholar

  • Price, P. 1980. Evolutionary biology of parasites. Princeton University Press, Princeton.Google Scholar

  • Pringle, E.G., R. Dirzo and D.M. Gordon. 2012. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies. Oecologia 170: 677–685.CrossrefPubMedGoogle Scholar

  • Postawa, T. and A. Furman. 2014. Abundance patterns of ectoparasites infesting different populations of Miniopterus species in their contact zone in Asia Minor. Acta Chiropt. 16: 387–395.CrossrefGoogle Scholar

  • Ratnasingham, S. and P.D.N. Hebert. 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8: e66213.Google Scholar

  • Reiczigel, J. and L. Rózsa. 2005. Quantitative Parasitology 3.0. Budapest. Distributed by the authors.Google Scholar

  • Reisen, W.K., M.L. Kennedy and N.T. Reisen. 1976. Winter ecology of ectoparasites collected from hibernating Myotis velifer (Allen) in southwestern Oklahoma (Chiroptera: Vespertilionidae). J. Parasitol. 62: 628–635.CrossrefGoogle Scholar

  • Rivera-García, K.D., C.A. Sandoval-Ruiz, R.A. Saldaña-Vazquez and J.E. Schondube. 2016. The effect of seasonality on host-bat fly ecological networks in a temperate mountain cave. Parasitology 144: 692–697.Google Scholar

  • Rzedowski, J. 1981. Vegetación de México. Editorial Limusa, Mexico City. pp. 434.Google Scholar

  • Sponchiado, J., G.L. Melo, G.A. Landulfo, F.C. Jacinavicius, D.M. Barros-Battesti and N.C. Cáceres. 2015. Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in cerrado fragments, western Brazil. Exp. Appl. Acarol. 66: 369–381.PubMedCrossrefGoogle Scholar

  • Stanko, M., B.R. Krasnov and S. Morand. 2006. Relationship between host abundance and parasite distribution: inferring regulating mechanisms from census data. J. Anim. Ecol. 75: 575–583.PubMedCrossrefGoogle Scholar

  • Stoner, K.E., K.A.O. Salazar, R.C.R. Fernández and M. Quesada. 2003. Population dynamics, reproduction, and diet of the lesser long-nosed bat (Leptonycteris curasoae) in Jalisco, Mexico: implications for conservation. Biodivers. Conserv. 12: 357–373.CrossrefGoogle Scholar

  • Swofford, D.L. 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA.Google Scholar

  • Tinsley, R.C., J.E. York, A.L.E. Everard, L.C. Stott, S.J. Chapple and M.C. Tinsley. 2011. Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on egg development. Parasitology 138: 1029–1038.CrossrefGoogle Scholar

  • Tlapaya-Romero, L., A. Horváth, S.Gallina-Tessaro, E.J. Naranjo and B. Gómez. 2015. Prevalencia y abundancia de moscas parásitas asociadas a una comunidad de murciélagos caverncolas en La Trinitaria, Chiapas, México. Revista Mexicana de Biodiversidad 86: 377–385.CrossrefGoogle Scholar

  • Valtonen, E.T., J.C.J. Holmes, J. Aronen and I. Rautelehti. 2003. Parasite communities as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch (Perca fluviatilis) in Central Finland. Parasitology 126: S43–S54.Google Scholar

  • Villegas-Guzman, G.A., C. López-González and M. Vargas. 2005. Ectoparasites associated to two species of Corynorhinus (Chiroptera: Vespertilionidae) from the Guanaceví Mining Region, Durango, Mexico. J. Med. Entomol. 43: 125–127.Google Scholar

  • Vink, C.J., P. Paquin and R.H. Cruickshank. 2012. Taxonomy and irreproducible biological science. BioScience 62: 451–452.CrossrefGoogle Scholar

  • Warburton, E.M., C.A. Pearl and M.J. Vonhof. 2016. Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat-helminth system. Parasitol. Res. 115: 2155–2164.CrossrefGoogle Scholar

  • Wenzel, R.L. 1976. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University. Science Bulletin. Biological Series 2: 1–177.Google Scholar

  • Wenzel, R.L., V.J. Tipton and A. Kiewlicz. 1966. The streblid batflies of Panama (Diptera: Calypterae: Streblidae), p. 405–675. In: (R.L. Wenzel and V.J. Tipton, eds.) Ectoparasites of Panama. Field Museum of Natural History, Chicago. pp. 861.Google Scholar

  • Zahn, A. and D. Rupp. 2004. Ectoparasite load in European vespertilionid bats. J. Zool. 262: 383–391.CrossrefGoogle Scholar

  • Zarazúa-Carbajal, M., R.A. Saldaña-Vázquez, C.A. Sandoval-Ruiz, K.E. Stoner and J. Benitez-Malvido. 2016. The specificity of host-bat fly interaction networks across vegetation and seasonal variation. Parasitol. Res. 115: 4037–4044.PubMedCrossrefGoogle Scholar

  • Zhang, L., S. Parsons, P. Daszak, L. Wei, G. Zhu and S. Zhang. 2010. Variation in the abundance of ectoparasites mites of flat-headed bats. J. Mammal. 91: 136–143.CrossrefGoogle Scholar

About the article

Received: 2016-12-06

Accepted: 2017-04-11

Published Online: 2017-05-25

Published in Print: 2018-02-23


Citation Information: Mammalia, Volume 82, Issue 2, Pages 133–143, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2016-0176.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in