Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

6 Issues per year

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

See all formats and pricing
More options …
Volume 82, Issue 3


Postnatal growth, wing development and age estimations in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: Rhinolophidae) in Kerend cave, western Iran

Hojjat Eghbali
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saeed Shahabi
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nargess Najafi
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robab Mehdizadeh
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shetav Yousefi
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mozafar Sharifi
  • Corresponding author
  • Department of Biology, Faculty of Science, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-28 | DOI: https://doi.org/10.1515/mammalia-2017-0006


We quantified postnatal changes in body mass, length of forearm, length of total gap of the fourth metacarpal-phalangeal joint and changes in wing morphology, including the wingspan, wing area, handwing length, handwing area, armwing length, armwing area, aspect ratio and wing loading in Rhinolophus euryale in a maternity roost in Kerend cave, western Iran. Mean body mass of pups increased linearly until 23 days, when they achieved 74.29% of the mean mass of adult females (11.28±0.74 g, n=12). Rates of body mass gain and forearm growth during the early stage of postnatal growth were 0.36 g/day and 1.41 mm/day, respectively. Length of epiphyseal gap increased during the first 3 weeks and subsequently followed by a linear decrease until day 70 when it closed. Wing characteristics increased linearly until the age of the first flight, after which growth rates significantly declined (all p<0.05). Wing loading decreased linearly (−0.09 Nm−2/day) until 36 days of age and thereafter increased to a maximum of 6.56±0.30 Nm−2 at 80 days of age. We compare our results with data obtained from close-related bat species, particularly Rhinolophus mehelyi previously studied in a nearby area.

Keywords: age estimation; postnatal growth; Rhinolophus euryale; wing development


  • Altringham, J.D. 1996. Bats: biology and behaviour. Oxford University Press, New York. pp. 262.Google Scholar

  • Baptista, T.L., C.S. Richrdson and T.H. Kunz. 2000. Postnatal growth and age estimation in free-ranging bats: a comparison of longitudinal and cross-sectional sampling methods. J. Mammal. 81: 709–718.CrossrefGoogle Scholar

  • Barclay, R.M.R. 1994. Constraints on reproduction by flying vertebrates: energy and calcium. Am. Nat. 144: 1021–1031.CrossrefGoogle Scholar

  • Benda, P., K. Fizolâhi, M. Andreas, J. Obuch, A. Reiter, M. Ševčík, M. Uhrin, P. Vallo and S. Ashrafi. 2012. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta. Soc. Zool. Bohem. 76: 163–582.Google Scholar

  • Brunet-Rossinni, A.K. and G.S. Wilkinson. 2009. Methods for age estimation and the study of senescence in bats. In: (T.H. Kunz and S. Parsons, eds.) Ecological and behavioural methods for the study of bats. The Johns Hopkins University Press, Baltimore, MD. pp. 315–325.Google Scholar

  • Buchler, E.R. 1980. The development of flight, foraging, and echolocation in the little brown bat (Myotis lucifugus). Behav. Ecol. Sociobiol. 6: 211–218.CrossrefGoogle Scholar

  • Chaverri, G. and T.H. Kunz. 2006. Reproductive biology and postnatal development in the tent-making bat Artibeus watsoni (Chiroptera: Phyllostomidae). J. Zool. Lond. 270: 650–656.CrossrefGoogle Scholar

  • Chen, W.K., P.C. Chen, K.M. Liu and S.B. Wang. 2007. Age and growth estimates of the white spotted bamboo shark, Chiloscyllium plagiosum, in the northern waters of Taiwan. J. Zool. Stud. 46: 92–102.Google Scholar

  • Chen, S.F., S.S. Huang, D.J. Lu and T.J. Shen. 2016. Postnatal growth and age estimation in Scotophilus kuhlii. Zoo Biol. 35: 35–41.CrossrefPubMedGoogle Scholar

  • Cheng, H.C. and L.L. Lee. 2002. Postnatal growth, age estimation, and sexual maturity in the Formosan leaf-nosed bat (Hipposideros terasensis). J. Mammal. 83: 785–793.CrossrefGoogle Scholar

  • DeBlase, A.F. 1980. The bats of Iran: systematics, distribution, ecology. Field Zool. N. S. 4: 1–424.Google Scholar

  • De Fanis, E. and G. Jones. 1995. Postnatal growth, mother-infant interactions and development of vocalizations in the vespertilionid bat Plecotus auritus. J. Zool. Lond. 235: 85–97.CrossrefGoogle Scholar

  • De Juana, E. 1992. Class Aves (birds). In: (J. del Hoyo, A. Elliot and J. Sargatal, eds.) Handbook of the birds of the World. Vol. 1. Lynx Edicions, Barcelona, Spain. pp. 35–73.Google Scholar

  • De Paz, O. 1986. Age estimation and postnatal growth of the greater mouse bat Myotis myotis (Borkhausen, 1797) in Guadalajara, Spain. J. Mammal. 50: 243–251.Google Scholar

  • Dietz, C., I. Dietz and B.M. Siemers. 2006. Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae). J. Mammal. 87: 1241–1251.CrossrefGoogle Scholar

  • Dietz, C., I. Dietz and B.M. Siemers. 2007a. Growth of horse shoebats (Chiroptera: Rhinolophidae) in temperate continental conditions and the influence of climate. Mammal. Biol. 72: 129–144.CrossrefGoogle Scholar

  • Dietz, C., O. von Helversen and D. Nill. 2007b. Handbuch der Fledermäuse Europas und Nordwestafrikas. Biologie, Kennzeichen, Gefährdung. Franckh-Kosmos, Stuttgart, Germany. pp. 399.Google Scholar

  • Elangovan, V., H. Raghuram, E.Y. Satya Priya and G. Marimuthu. 2002. Postnatal growth, age estimation and development of foraging behaviour in the fulvous fruit bat Rousettus leschenaulti. J. Biosci. 27: 695–702.CrossrefPubMedGoogle Scholar

  • Elangovan, V., E.Y. Satya Priya, H. Raghuram and G. Marimuthu. 2007. Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx. J. Zool. 110: 189–196.CrossrefGoogle Scholar

  • Fenton, M.B. and N.B. Simmons. 2014. Bats: a world of science and mystery. University of Chicago Press, Chicago IL. pp. 303.Google Scholar

  • Goiti, U., J.R. Aihartza, I. Garin and J. Zabala. 2003. Influence of habitat on the foraging behaviour of the Mediterranean horseshoe bat, Rhinolophus euryale. Acta Chiropterol. 5: 75–84.CrossrefGoogle Scholar

  • Gould, E. 1971. Studies of maternal-infant communication and development of vocalizations in the bats Myotis and Eptesicus. Commun. Behav. Biol. 5: 263–313.Google Scholar

  • Hamilton, I.M. and R.M.R. Barclay. 1998. Diets of juvenile, yearling, and adult big brown bats (Eptesicus fuscus) in southeastern Alberta. J. Mammal. 79: 764–771.CrossrefGoogle Scholar

  • Hoying, K.M. and T.H. Kunz. 1998. Variation in size at birth and post-natal growth in the eastern pipistrelle bat Pipistrellus subflavus (Chiroptera: Vespertilionidae). J. Zool. Lond. 245: 15–27.CrossrefGoogle Scholar

  • Hughes, P.M., R.D. Ransome and G. Jones. 1989. Aerodynamic constraints on flight ontogeny in free-living greater horseshoe bats, Rhinolophus ferrumequinum. In: (V. Hanák, I. Horáček and J. Gaisler, eds.) European bat research. Charles University Press, Praha, Cescholovakia. pp. 255–262.Google Scholar

  • Hughes, P.M., J.M.V. Rayne and G. Jones. 1995. Ontogeny of “true” flight and other aspects of growth in the bat Pipistrellus pipistrellus. J. Zool. Lond. 235: 291–318.Google Scholar

  • Hutson, A.M., F. Spitzenberger, J. Juste, S. Aulagnier, J.T. Alcaldé, J. Palmeirim, M. Paunovic and A. Karataş. 2008. Rhinolophus euryale. IUCN red list of threatened species. Version 2011 (2). IUCN, Gland, Switzerland.Google Scholar

  • Isaac, S.S. and G. Marimuthu. 1996. Postnatal growth and age estimation in the Indian pygmy bat Pipistrellus mimus. J. Mammal. 77: 199–204.CrossrefGoogle Scholar

  • Jin, L.R., A.Q. Lin, K.P. Sun, Y. Liu and J. Feng. 2010. Postnatal growth and age estimation in the ashy leaf-nosed bat, Hipposideros cineraceus. Acta Chiropterol. 12: 155–160.CrossrefGoogle Scholar

  • Jin, L.R., A.Q. Lin, K.P. Sun, Y. Liu and J. Feng. 2011. Postnatal development of morphological features and vocalization in the pomona leaf-nosed bat Hipposideros pomona. Acta Theriol. 56: 1322.CrossrefGoogle Scholar

  • Jin, L.R., L. Bo, K.P. Sun, Y. Liu, J. Pan Ho and J. Feng. 2012a. Postnatal growth and age estimation in Marshall’s horseshoe bat, Rhinolophus marshalli. Acta Chiropterol. 14: 105–110.CrossrefGoogle Scholar

  • Jin, L.R., J. Wang, Z. Zhang, K.P. Sun, J.S. Kanwal and J. Feng. 2012b. Postnatal development of morphological and vocal features in Asian particolored bat, Vespertilio sinensis. Mammal. Biol. 77: 339–344.CrossrefGoogle Scholar

  • Krebs, J.K. 1972. Ecology: the experimental analysis of distribution and abundance. Harper International Edition, New York. pp. 182–210.Google Scholar

  • Kunz, T.H. 1974. Reproduction, growth, and mortality of the vespertilionid bat, Eptesicus fuscus, in Kansas. J. Mammal. 55: 1–13.CrossrefPubMedGoogle Scholar

  • Kunz, T.H. 1987. Postnatal growth and energetics of suckling bats. In: (M.B Fenton, P.A. Racey and J.M.V. Rayner, eds.) Recent advances in the study of bats. Cambridge University Press, Cambridge, UK. pp. 395–420.Google Scholar

  • Kunz, T.H. and E.L.P Anthony. 1982. Age estimation and postnatal growth in the bat Myotis lucifugus. J. Mammal. 63: 23–32.CrossrefGoogle Scholar

  • Kunz, T.H. and S.K. Robson. 1995. Postnatal growth and development in the Mexican free-tailed bat (Tadarida brasiliensis mexicana): birth size, growth rates, and age estimation. J. Mammal. 76: 769–783.CrossrefGoogle Scholar

  • Kunz, T.H. and A.A. Stern. 1995. Maternal investment and post-natal growth in bats. Symp. Zool. Soc. Lond. 67: 123–138.Google Scholar

  • Kunz, T.H., R.A. Adams and W.R. Hood. 2009. Methods for assessing size at birth and postnatal growth and development in bats. In: (T.H. Kunz and S. Parsons, eds.) Ecological and behavioral methods for the study of bats. The Johns Hopkins University Press, Baltimore, MD. pp. 273–314.Google Scholar

  • Lin, A.Q., L.R. Jin, Y. Liu, K.P. Sun and J. Feng. 2010. Postnatal growth and age estimation in Horsfild’s leaf-nosed bat Hipposideros larvatus. Zool. Stud. 49: 789–796.Google Scholar

  • Lin, A.Q., L.R. Jin, L.M. Shi, K.P Sun, S.W. Berquist, Y. Liu and J. Feng. 2011. Postnatal development in Andersen’s leaf-nosed bat Hipposideros pomona: flight, wing shape, and wing bone lengths. J. Zool. Lond. 114: 69–77.Google Scholar

  • Liu, Y., L.R. Jin, W. Metzner and J. Feng. 2009. Postnatal growth and age estimation in big-footed Myotis, Myotis macrodactylus. Acta Chiropterol. 11: 105–111.CrossrefGoogle Scholar

  • McLean, J.A. and J.R. Speakman. 2000. Morphological changes during postnatal growth and reproduction in the brown long-eared bat Plecotus auritus: implications for wingloading and predicted flight performance. Nat. Hist. 34: 773–791.CrossrefGoogle Scholar

  • Norberg, U.M. and J.M.V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. B Biol. Sci. 316: 335–427.CrossrefGoogle Scholar

  • Reiter, G. 2004. Postnatal growth and reproductive biology of Rhinolophus hipposideros (Chiroptera: Rhinolophidae). J. Zool. Lond. 262: 231–241.CrossrefGoogle Scholar

  • Russo, D., G. Jones and A. Migliozzi. 2002. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implication for conservation. Biol. Conserv. 107: 71–81.CrossrefGoogle Scholar

  • Salsamendi, E., J. Aihartza, U. Goiti, D. Almenar and I. Garin. 2005. Echolocation calls and morphology in the Mehely’s (Rhinolophus mehelyi) and Mediterranean (R. euryale) horseshoe bats: implications for resource partitioning. Hystrix It. J. Mammal. 16: 149–158.Google Scholar

  • Sharifi, M. 2004a. Postnatal growth and age estimation in the Mehely’s horseshoe bat (Rhinolophus mehelyi). Acta Chiropterol. 6: 155–161.CrossrefGoogle Scholar

  • Sharifi, M. 2004b. Postnatal growth in Myotis blythii (Chiroptera, Vespertilionidae). Mammal. 68: 283–289.Google Scholar

  • Sharifi, M. and V. Akmali. 2006. Postnatal growth in the lesser mouse-eared bat, Myotis blythii, in captivity. Zool. Mid. East 37: 13–20.CrossrefGoogle Scholar

  • Sharifi, M. and S. Vaissi. 2013. Postnatal growth in the Long-fingered bat, Miniopterus schreibersii pallidus, in Iran (Chiroptera: Miniopteridae). Zool. Mid. East 77: 181–186.Google Scholar

  • Sharifi, M., Z. Hemmati and P. Rahimi. 2000. Distribution and conservation status of bats in Iran. Myotis 38: 61–68.Google Scholar

  • Sharifi, M., S. Vaissi, H. Javanbakht and V. Akmali. 2012. Postnatal growth and wing development in Kuhl’s pipistrelle Pipistrellus kuhlii (Chiroptera: Vespertilionidae) in captivity. Zool. Stud. 51: 1235–1247.Google Scholar

  • Shen, H.P. and L.L. Lee. 2000. Mother-young interactions in a maternity colony of Myotis formosus. J. Mammal. 81: 726–733.CrossrefGoogle Scholar

  • Swamidoss, D.P., P. Parvathiraj and M.R. Sudhakaran. 2014. Parturition and postnatal growth of Dusky leaf-nosed bat, Hipposideros ater. Asian J. Anim. Sci. 8: 1–14.CrossrefGoogle Scholar

  • Tuttle, M.D. and D. Stevenson. 1982. Growth and survival of bats. In: (T.H. Kunz, ed.) Ecology of bats. Plenum Press, New York. pp. 105–150.Google Scholar

About the article

Received: 2017-01-16

Accepted: 2017-07-13

Published Online: 2017-08-28

Published in Print: 2018-04-25

Citation Information: Mammalia, Volume 82, Issue 3, Pages 276–287, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2017-0006.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in