Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Volume 83, Issue 1

Issues

Feeding strategy of two rodent species in a set-aside field and its influence on alimentary tract morphometry

Marta Heroldova
  • Corresponding author
  • Institute of Forest Ecology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
  • Institute of Vertebrate Biology Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Janova
  • Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého 1, 612 00 Brno, Czech Republic
  • Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého 1, 612 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-04 | DOI: https://doi.org/10.1515/mammalia-2017-0106

Abstract

We examined the feeding strategy of two dominant rodents, the common vole (Microtus arvalis) and the pygmy field mouse (Apodemus uralensis), in set-aside fields over a period of 1 year. Diet analysis revealed dominance of green plant shoots in common vole’s diet and seeds in the diet of the pygmy field mouse. Food availability in the set-aside fields was strongly correlated with the diet of the herbivorous common vole, but not with that of the granivorous pygmy-field mouse. Both feeding strategies reflect specific morphological adaptations of the digestive tract of both species. A comparison of the gastrointestinal tract (GIT; length and mass without oesophagus; including contents) of the common vole and pygmy field mouse revealed a correlation between body size and length and the GIT weight in both species. The common vole had a proportionally heavier GIT with a larger of the common vole and pygmy field mouse relative proportion of caecum. The GIT length was proportionally greater in juvenile females, while the GIT weight was greater in adult females of both species. The GIT morphometry of both species varied with season and reproductive status, presumably as food consumed altered in line with vegetation phenology and the rodent’s energy requirements.

Keywords: common vole; feeding strategy; gastrointestinal tract morphometry; pygmy-field mouse; set-aside

References

  • Amasaki, H., M. Daigo and N. Meguro. 1988. Morphological observations of the large intestine in the common vole, Microtus arvalis Pallas. Zool. Sci. 5: 205–208.Google Scholar

  • Balmelli, L., W. Nentwig and J.P. Airoldi. 1999. Food preferences of the common vole Microtus arvalis in the agricultural landscape with regard to nutritional components of plants. Z. Saugetierkd. 64: 154–168.Google Scholar

  • Behmann, H. 1973. Vergleichend- und funktionell-anatomische Untersuchungen am Caecum und Colon myomorpher Nagetiere. Z. wiss. Zool. 186: 173–294 (in German).Google Scholar

  • Borkowska, A. 1995. Seasonal changes in gut morphology of the striped field mouse (Apodemus agrarius). Can. J. Zool. 73: 1095–1099.CrossrefGoogle Scholar

  • Briner, T., W. Nentwig and J.P. Airoldi. 2005. Habitat quality of wildflower strips for common voles (Microtus arvalis) and its relevance for agriculture. Agric. Ecosyst. Environ. 105: 173–179.CrossrefGoogle Scholar

  • Broughton, R.K., R.F. Shore, M.S. Heard, S.R. Amy, W.R. Meek, J.W. Redhead, A. Turk and R.F. Pywell. 2014. Agri-environment scheme enhances small mammal diversity and abundance at the farm-scale. Agric. Ecosyst. Environ. 192: 122–129.CrossrefWeb of ScienceGoogle Scholar

  • Butet, A. and Y.R. Delettre. 2011. Diet differentiation between European Arvicolinae and Murinae rodents. Acta Theriol. 56: 297–304.CrossrefGoogle Scholar

  • Carleton, M.D. 1981. A survey of gross stomach morphology in Microtinae (Rodentia: Muriodea). Z. Saugetierkd. 46: 93–108.Google Scholar

  • Chivers, D.J. and P. Langer (eds.). 2005. The digestive system in mammals. Food, form and function. Cambridge University Press, New York, NY, USA. pp. 464.Google Scholar

  • Corp, N., M.L. Gorman and J.R. Speakman. 1997. Apparent absorption efficiency and gut morphometry of wood mice, Apodemus sylvaticus, from two distinct populations with different diets. Physiol. Zool. 70: 610–614.PubMedCrossrefGoogle Scholar

  • De la Pena, M.N., Y. Delletre, G. Paillat, P. Morant, L. Le Du and F. Burel. 2003. Response of small mammal community to changes in western French agricultural landscape. Landsc. Ecol. 18: 265–278.CrossrefGoogle Scholar

  • Ellis, B.A., J.N. Mills, E.J.T. Kennedy, J.I. Maiztegui and E. Child. 1994. The relationship among diet, alimentary tract morphology, and life history for five species of rodents from the central Argentine pamps. Acta Theriol. 39: 345–355.CrossrefGoogle Scholar

  • Eto, T., R. Ozaki, G.A. Kato, S.H. Sakamoto, C. Koshimoto and T. Morita. 2016. Flexibility of digestive tract morphology in response to environmental conditions in the large Japanese field mouse Apodemus speciosus. Mammal Study 41: 71–76.CrossrefGoogle Scholar

  • Firbank, L.G., H.R. Arnald, B.C. Eversham, J.O. Mountford, G.L. Radford, M.G. Telfer, J.R. Treweek, N.R.C. Webb and T.C.E. Wells. 1993. Managing set-aside land for wildlife. ITE Research Publication No. 7. Natural Environmental Research Council, London, p. 1993.Google Scholar

  • Gebczynska, Z. and M. Gebczynski. 1971. Length and weight of the alimentary tract of the root vole. Acta Theriol. 16: 359–369.CrossrefGoogle Scholar

  • Giraudoux, P., P. Delattre, J.P. Quere and J.P. Damange. 1994. Structure and kinetics of rodent populations, in a region under agricultural land abandonment. Acta Oecol. 15: 385–400.Google Scholar

  • Golley, F.B. 1960. Anatomy of the digestive tract of Microtus. J. Mammal. 41: 89–99.CrossrefGoogle Scholar

  • Gorman, M.L. 1995. The population dynamics of small mammals living in set-aside and surrounding semi-natural and crop land. J. Zool. 236: 451–464.CrossrefGoogle Scholar

  • Heroldova, M. 1994. Diet of four rodent species from Robinia-pseudoacacia stands in South Moravia. Acta Theriol. 39, 333–337.CrossrefGoogle Scholar

  • Heroldova, M. and J. Suchomel. 2016. Small mammals in sugar beet stands and their significance in terms of damage to sugar beet production. Listy cukrov. řepař. 132: 96–99 (in Czech with English Summary).Google Scholar

  • Heroldova, M., J. Zejda, M. Zapletal, D. Obdrzalkova, E. Janova, J. Bryja and E. Tkadlec. 2004. Importance of winter rape for small rodents. Plant Soil Environ. 50: 175–181.Google Scholar

  • Heroldova, M., E. Janova, J. Bryja and E. Tkadlec. 2005. Set-aside plots – source of small mammal pests? Folia Zool. 54: 337–350.Google Scholar

  • Heroldova, M., J. Bryja, J. Zejda and E. Tkadlec. 2007. Structure and diversity of small mammal communities in agriculture landscape. Agric. Ecosyst. Environ. 120: 206–210.CrossrefWeb of ScienceGoogle Scholar

  • Heroldova, M., M. Pejcoch, J. Bryja, E. Janova, J. Suchomel and E. Tkadlec. 2010. Tula virus in populations of small terrestrial mammals in a rural landscape. Vector Borne Zoonotic Dis. 10: 599–603.Web of ScienceCrossrefGoogle Scholar

  • Holisova, V. 1959. Potrava hraboše polního (The diet of common vole), In: (J. Kratochvil, ed.) Hraboš polní (Microtus arvalis) (Common vole (Microtus arvalis)): 54–89. NČSAV, Praha. (In Czech with German abstract).Google Scholar

  • Holisova, V. 1973. Variation in weight of gastro-intestinal tract with content in Clethrionomys glareolus captured in snap-traps. Zool. Listy, 22: 297–309.Google Scholar

  • Holisova, V. and R. Obrtel. 1984. Variation in the trophic niche of Apodemus microps in two different habitats. Folia Zool. 33: 49–55.Google Scholar

  • Holisova, V., J. Pelikan and J. Zejda. 1962. Ecology and population dynamics in Apodemus microps Krat. and Ros. (Mamm.: Muridae). Práce Brněnské základny Čs. Akad. Věd 34: 493–540.Google Scholar

  • Hume, I.D. 1994. Gut morphology, body size and digestive performance in rodents. In: (D.J. Chivers and P. Langer, eds). The digestive system in mammals: food, form and function. Cambridge University Press, New York. 315–323.Google Scholar

  • Jakrlova, J. 1987a. Destruktivní stanovení nadzemní biomasy [Destructive assessment of aboveground biomass]. In: (M. Rychnovska ed.) Metody studia travinných ekosystémů [Study methods of grass ecosystems]. Academia, Praha: 56–64 (in Czech).Google Scholar

  • Jakrlova, J. 1987b. Stanovení produkce semen [Assessment of seed production]. In: (M. Rychnovska ed.) Metody studia travinných ekosystémů [Study methods of grass ecosystems]. Academia, Praha: 94–95 (in Czech).Google Scholar

  • Janova, E. and M. Heroldova. 2016. Response of small mammals to variable agricultural landscape in Central Europe. Mamm. Biol. 81: 488–493.CrossrefGoogle Scholar

  • Janova, E., J. Bryja, D. Cizmar, L. Cepelka and M. Heroldova. 2015. A new method for assessing food quality in common vole (Microtus arvalis) populations. Eur. J. Wildl. Res. 61: 57–62.Web of ScienceCrossrefGoogle Scholar

  • Janova, E., M. Heroldova and L. Cepelka. 2016. Rodent food quality and its relation to crops and other environmental and population parameters in and agricultural landscape. Sci. Total Environ. 562: 164–169.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Karasov, W.H. and C. Martinez del Rio. 2007. Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, Princeton.Google Scholar

  • Kostelecka-Myrcha, A. and A. Myrcha. 1964. The rate of passage of foodstuffs through the alimentary tracts of certain Microtidae under laboratory conditions. Acta Theriol. 9: 37–53.CrossrefGoogle Scholar

  • Lovegrove, B.G. 2010. The allometry of rodent intestines. J. Comp. Physiol. B. 180: 741–755.PubMedCrossrefGoogle Scholar

  • Myrcha, A. 1965. Length and weight of the alimentary tract of Apodemus flavicolis. Acta Theriol. 10: 225–228.CrossrefGoogle Scholar

  • Rogers, L.M. and M.L. Gorman. 1995. The diet of the wood mouse Apodemus sylvaticus on set-aside land. J. Zool. 235: 77–83, Part 1.CrossrefGoogle Scholar

  • Sotherton, S.W. 1998. Land use changes and the decline of farmland wildlife: an appraisal of the set-aside approach. Biol. Conserv. 83: 123–128.Google Scholar

  • StatSoft Inc, 2001. STATISTICA (data analysis software system), version 6.Google Scholar

  • Tattersall, F.H., B.J. Hart, W.J. Manley, D.W. Macdonald and R.E. Feber. 1999. Small mammals on set-aside blocks and margins. Field margins and buffer zones: ecology, management and policy. Appl. Biol. 54: 131–138.Google Scholar

  • Treml, F., J. Nepereny, E. Janova, H. Band’ouchova and J. Pikula. 2012. Prevalence of antibodies against leptospires in small mammals in relation to age, sex and season. Acta Vet. Brno 81: 97–102.Web of ScienceCrossrefGoogle Scholar

  • Vorontsov, N.N. 1962. The ways of food specialization and evolution of the alimentary system in Muroidea. In: (J. Kratochvíl and J. Pelikán eds.) Symposium Theological Proceedings of the International Symposium on Methods of Mammalogical Investigation, Brno. Publ. House Academia Praha, pp. 360–377.Google Scholar

  • Wilczynska, B. 1999. Histometry and surface area of the alimentary canal of Apodemus flavicollis. Acta Theriol. 44: 29–36.CrossrefGoogle Scholar

  • Zeman, L. 1995. Katalog krmiv (Index of fodders), VÚVZ Pohořelice, ISBN 80-901598-3-4 (in Czech).Google Scholar

About the article

Received: 2017-08-29

Accepted: 2018-03-29

Published Online: 2018-05-04

Published in Print: 2018-12-19


Citation Information: Mammalia, Volume 83, Issue 1, Pages 34–40, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2017-0106.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in