Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Denys, Christiane

IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.434
Source Normalized Impact per Paper (SNIP) 2018: 0.665

See all formats and pricing
More options …
Volume 79, Issue 2


Spatio-temporal patterns in the distribution of the multi-mammate mouse, Mastomys natalensis, in rice crop and fallow land habitats in Tanzania

Loth S. Mulungu / Valency Sixbert
  • Crop Science and Production, Sokoine University of Agriculture, P.O. Box 3005, Morogoro, Tanzania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victoria Ngowo
  • Rodent Control Centre, Ministry of Agriculture, Food Security and Cooperatives, P.O. Box 3047, Morogoro, Tanzania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mashaka Mdangi / Abdul S. Katakweba / Protas Tesha
  • Rodent Control Centre, Ministry of Agriculture, Food Security and Cooperatives, P.O. Box 3047, Morogoro, Tanzania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Furaha P. Mrosso / Margaret Mchomvu
  • Rodent Control Centre, Ministry of Agriculture, Food Security and Cooperatives, P.O. Box 3047, Morogoro, Tanzania
  • Ilonga Agricultural Research Institute, P.O. Box 33, Kilosa, Tanzania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bukheti S. Kilonzo / Steven R. Belmain
Published Online: 2014-06-17 | DOI: https://doi.org/10.1515/mammalia-2014-0006


An understanding of the dispersion patterns of a pest is an important pre-requisite for developing an effective management programme for the pest. In this study, rodents were trapped in two rice fields and two fallow fields for three consecutive nights each month from June 2010 to May 2012. Mastomys natalensis was the most abundant rodent pest species in the study area, accounting for >95% of the trapped rodent community. Rattus rattus, Dasymys incomtus, Acomys spinosissimus and Grammomys dolichurus comprised relatively small proportions of the trapped population. Morisita’s index of dispersion was used to measure the relative dispersal pattern (aggregate, random, uniform) of individuals across each trapping grid as a means of comparing rodent distribution in rice and fallow fields over time. This analysis revealed that the rodents in rice fields generally exhibited an aggregated spatio-temporal distribution. However, the rodents in fallow fields were generally less aggregated, approaching a random distribution in some habitats and seasons. Heat maps of trapping grids visually confirmed these dispersal patterns, indicating the clumped or random nature of captured rodents. ANOVA showed that the parameters of habitat (rice, fallow), crop stage (transplanting, vegetative, booting, maturity) and cropping season (wet, dry) all significantly impacted the number of rodents captured, with the vegetative, dry season, fallow habitat having the highest number of rodents; and the transplanting, wet season, rice habitat with the least number of rodents. Therefore, such spatio-temporal patterns can serve as a tool for developing stratified biodiversity sampling plans for small mammals and decision making for rodent pest management strategies.

Keywords: aggregate distribution; dispersion; irrigated rice; pest management; small mammals


  • Brown, P.R., G.R. Singleton, and Sudarmaji. 2001. Habitat use and movements of the rice-field rat, Rattus argentiventer, in West Java, Indonesia. Mammalia 65: 151–165.Google Scholar

  • Brown, P.R., N.P. Tuan, G.R. Singleton, P.T.T. Ha, P.T. Hoa, D.T. Hue, T.Q. Tan, N. Van Tuat, J. Jacob and W.J. Müller. 2006. Ecologically based management of rodents in the real world: applied to a mixed agroecosystem in Vietnam. Ecol. Appl. 16: 2000–2010.PubMedGoogle Scholar

  • Christensen, T. 1996. Home range and abundance of Mastomys natalensis (Smith, 1834) in habitats affected by cultivation. Afr. J. Ecol. 34: 298–311.Google Scholar

  • Dungan, J.L., J.N. Perry, M.R.T. Dale, P. Legendre, S. Citron-Pousty, M.J. Fortin, A. Jakomulska, M. Miriti, and M.S. Rosenberg. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25: 626–640.Google Scholar

  • Esfandiari, M. and M.S. Mossadegh. 2007. Spatial distribution and sampling of Icerya purchasi Mask. (Homoptera: Margarodidae) on orange trees in Southwest Iran. J. Boil. Sci. 7: 1239–1243.Google Scholar

  • Ferreira, S.M. and R.J. Van Aarde. 1996. Changes in community characteristics of small mammal rehabilitating coastal dune forests in northern KwaZulu-Natal. Afr. J. Ecol. 34: 113–130.Google Scholar

  • Granjon, L., L. Lavrenchenko, M. Corti, N. Coetzee and E.H. Abdel-Rahman. 2008. Mastomys natalensis. In: IUCN 2013. IUCN Red List of Threatened Species.Google Scholar

  • Hansen, R.M. and E.E. Reemega. 1961. Nearest neighbour concept applied to pocket gopher populations. Ecology 42: 812–814.Google Scholar

  • He, F., K.J. Gaston and J. Wu. 2002. On species occupancy-abundance models. Ecoscience 9: 119–126.Google Scholar

  • Hoffmann, A. and H. Klingel. 2001. Spatial and temporal patterns in Mastomys cf. natalensis (Smith, 1834) as revealed by radio-tracking. In: (C. Denys, L. Granjon and A. Poulet, eds.) African small mammals. IRD Editions, Paris, France. pp. 459–468.Google Scholar

  • Kingdon, J. 1974. East African mammals: an atlas of evolution in Africa. Hares and rodents. Vol. IIB. University of Chicago Press, Chicago, IL. pp. 371.Google Scholar

  • Krebs, C. 1999. Ecological methodology, 2nd ed. Benjamin/Cummings, Addison Wesley, Menlo Park, CA. pp. 496.Google Scholar

  • Leirs, H. 1994. Population ecology of Mastomys natalensis (Smith, 1834). Implications for rodent control in Africa. Agricultural Edition nr. 35, Belgian Administration for Development Cooperation, Brussels. pp. 268.Google Scholar

  • Leirs, H., W. Verheyen and R. Verhagen. 1996a. Spatial patterns in Mastomys natalensis in Tanzania (Rodentia: Muridae). Mammalia 60: 545–556.Google Scholar

  • Leirs, H., R. Verhagen, W. Verheyen, W.P. Mwanjabe and T. Mbise. 1996b. Forecasting rodent outbreak in Africa: an ecological basis for Mastomys control in Tanzania. Appl. Ecol. 33: 937–943.Google Scholar

  • Leirs, H., R. Verhagen, C.A. Sabuni, P.S. Mwanjabe and W.N. Verheyen. 1997. Spatial dynamics of Mastomys natalensis in a field fallow mosaic in Tanzania. Suppl. 1. Belg. J. Zool. 127: 29–38.Google Scholar

  • Ludwig, J.A. 1979. A test of different quadrat variance methods for the analysis of spatial pattern. In: (R.M. Cormack and J.K. Ord, eds.) Spatial and temporal analysis in ecology. International Cooperative Publishers, Fairland, MD. pp. 284–304.Google Scholar

  • Makundi, R.H. and A.W. Massawe. 2011. Ecologically based rodent management in Africa: potential and challenges. Wildlife Res. 38: 588–595.Web of ScienceGoogle Scholar

  • Massawe, A.W., W. Rwamugira, H. Leirs, R.H. Makundi and L.S. Mulungu. 2005. Influence of land preparation methods and vegetation cover on population abundance of Mastomys natalensis in Morogoro, Tanzania. Belgian J. Zool. 135: 187–190.Google Scholar

  • Matteucci, D.S. and A. Colma. 1982. Metodología para el estudio de la vegetación. Secretaría General de la Organización de los Estados Americanos, Washington, DC. pp. 168.Google Scholar

  • McGeoch, M.A. and K.J. Gaston. 2002. Occupancy frequency distributions: patterns, artefacts and mechanisms. Bio. Rev. 77: 311–331.Google Scholar

  • Monadjem, A., T.A. Mahlaba, N. Dlamini, S.J. Eiseb, S.R. Belmain, L.S. Mulungu, A.W. Massawe, R.H. Makundi, K. Mohr and P.J. Taylor. 2011. Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa. Wildlife Res. 38: 603–609.Web of ScienceGoogle Scholar

  • Morisita, M. 1962. Iδ-Index, a measure of dispersion of individuals. Res. Popul. Ecol. 4: 1–7.CrossrefGoogle Scholar

  • Mulungu, L.S., V. Ngowo, M. Mdangi, A.S. Katakweba, P. Tesha, F.P. Mrosso, M. Mchomvu, P.M. Sheyo and B.S. Kilonzo. 2013. Population dynamics and breeding patterns of multi-mammate mouse, Mastomys natalensis (Smith 1834), in irrigated rice field in Eastern Tanzania. Pest Manag. Sci. 69: 371–377.Web of ScienceGoogle Scholar

  • Odhiambo, R.O., R.H. Makundi, H. Leirs and R. Verhagen. 2005. Community structure and seasonal abundance of rodents of maize farms in southwestern Tanzania. Belgium J. Zool. 135: 113–118.Google Scholar

  • Odum, E.P. 1986. Ecologia. Guanabara Koogan, Rio de Janeiro, RJ, Brazil. pp. 434.Google Scholar

  • Pedigo, L.P. and G.D. Buntin. 1994. Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, FL. pp. 714.Google Scholar

  • Perry, J.N., A.M. Liebhold, M.S. Rosenberg, J. Dungan, M. Miriti, A. Jakomulska and S. Citron-Pousty. 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25: 578–600.Google Scholar

  • Pielou, E.C. 1977. Mathematical ecology. Wiley, New York. pp. 385.Google Scholar

  • Rossi, R.E., D.J. Mulla, A.G. Journel and E.H. Franz. 1992. Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecol. Monogr. 62: 277–314.Google Scholar

  • Sluydts, V., S. Davis, S. Mercelis and H. Leirs. 2009. Comparison of multimammate mouse Mastomys natalensis demography in monoculture and mosaic agricultural habitat: implications for pest management. Crop Protect. 28: 647–654.Web of ScienceGoogle Scholar

  • Southwood, T.R.E. and P.A. Henderson. 2000. Ecological methods. 3rd ed. Blackwell Science, Oxford, UK. pp. 575.Google Scholar

  • Steen, H., R.A. Ims and G.A. Sonerud. 1996. Spatial and temporal patterns of small rodent population dynamics at a regional scale. Ecology 77: 2365–2372.Google Scholar

  • Wiens, J.A. 1976. Population responses to patchy environments. Annu. Rev. Ecol. Syst. 7: 81–120.Google Scholar

  • Zenuto, R. and D. Busch. 1998. Population biology of the subterranean rodent Ctenomys australis (tuco-tuco) in a coastal dunefield in Argentina. Z. Saugetierkd. 60: 277–285.Google Scholar

About the article

Corresponding author: Loth S. Mulungu, Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania, e-mail: ,

Received: 2014-01-11

Accepted: 2014-05-13

Published Online: 2014-06-17

Published in Print: 2015-05-01

Citation Information: Mammalia, Volume 79, Issue 2, Pages 177–184, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2014-0006.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in