Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2016: 0.805
5-year IMPACT FACTOR: 1.000

CiteScore 2016: 0.89

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.711

Online
ISSN
1864-1547
See all formats and pricing
More options …
Ahead of print

Issues

Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion

Vladimír Mazoch
  • Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
  • Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 60365, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ondřej Mikula
  • Corresponding author
  • Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 60365, Czech Republic
  • Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef Bryja
  • Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 60365, Czech Republic
  • Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hana Konvičková
  • Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 60365, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isa-Rita Russo
  • Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erik Verheyen
  • Royal Belgian Institute for Natural Sciences, Operational Direction Taxonomy and Phylogeny, 1000, Brussels, Belgium
  • Evolutionary Ecology Group, Biology Department, University of Antwerp, 2020, Antwerp, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radim Šumbera
  • Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-12 | DOI: https://doi.org/10.1515/mammalia-2017-0001

Abstract

Murid rodents of the genus Aethomys are one of the most common rodents in drier habitats in sub-Saharan Africa. Among them, the red veld rat Aethomys chrysophilus is the most widespread species with the core distribution located in the Zambezian bioregion. In this study, we describe phylogeographic structure of the species and estimate its age from a time-calibrated phylogeny of the genus. Seven parapatric clades were identified in the mitochondrial cytochrome b phylogeny, where some of the distributions of these clades have been separated by previously described biogeographical divides (Zambezi-Kafue river system, Rukwa Rift and the Eastern Arc Mountains). One internal clade corresponded to populations previously described as a distinct species, Aethomys ineptus. The whole A. chrysophilus complex was estimated to be 1.3 (0.5–2.4) Mya old, with A. ineptus originating 0.7 (0.1–1.4) Mya before present. The internal position of A. ineptus was also recovered in phylogenetic reconstruction based on two nuclear genes and thus it is not a consequence of mitochondrial introgression. In addition, we analyzed skull form variation across the species’ distributional range and found no significant difference between A. ineptus and the rest of A. chrysophilus complex.

This article offers supplementary material which is provided at the end of the article.

Keywords: Aethomys chrysophilus; Aethomys ineptus; phylogeography; Plio-Pleistocene climate changes; Zambezian bioregion

References

  • Adler, D. 2005. vioplot: Violin plot. R package version 0.2. http://wsopuppenkiste.wiso.uni-goettingen.de/∼dadler.

  • Aghová, T., R. Šumbera, L. Piálek, O. Mikula, M.M. McDonough, L.A. Lavrenchenko, Y. Meheretu, J.S. Mbau and J. Bryja. 2017. Multilocus phylogeny of east African gerbils (Rodentia, Gerbilliscus) illuminates the history of the Somali-Masai savanna. J. Biogeogr. in press, doi:10.1111/jbi.13017.Google Scholar

  • Baker, R.J., M.B. Qumsiyeh and I.L. Rautenbach. 1988. Evidence for eight tandem and five centric fusions in the evolution of the karyotype of Aethomys namaquensis A. Smith (Rodentia: Muridae). Genetica 76: 161–169.CrossrefGoogle Scholar

  • Barton, N.H. and G.M. Hewitt. 1989. Adaptation, speciation and hybrid zones. Nature 341: 497–503.PubMedCrossrefGoogle Scholar

  • Berger, S.A., D. Krompass and A. Stamatakis. 2011. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60: 291–302.PubMedCrossrefGoogle Scholar

  • Beuning, K.R.M., K.A. Zimmerman, S.J. Ivory and A.S. Cohen. 2011. Vegetation response to glacial-interglacial climate variability near Lake Malawi in the southern African tropics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303: 81–92.CrossrefGoogle Scholar

  • Bivand, R. and N. Lewin-Koh. 2016. maptools: tools for Reading and Handling Spatial Objects. https://CRAN.R-project.org/package=maptools.

  • Blome, M.W., A.S. Cohen, C.A. Tryon, A.S. Brooks and J. Russell. 2012. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J. Hum. Evol. 62: 563–592.PubMedCrossrefGoogle Scholar

  • Bohoussou, K.H., R. Cornette, B. Akpatou, M. Colyn, J.C. Kerbis Peterhans, J. Kennis, R. Šumbera, E. Verheyen, E. N’Goran, P. Katuala and V. Nicolas. 2015. The phylogeography of the rodent genus Malacomys suggests multiple Afrotropical Pleistocene lowland forest refugia. J. Biogeogr. 42: 2049–2061.CrossrefGoogle Scholar

  • Bouckaert, R.R., J. Heled, D. Kühnert, T. Vaughan, C.H. Wu, D. Xie, M.A. Suchard, A. Rambaut and A.J. Drummond. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10: e1003537.PubMedCrossrefGoogle Scholar

  • Braconnot, P., B. Otto-Bliesner, S. Harrison, S. Joussaume, J.-Y. Peterchmitt, A. Abe-Ouchi, M. Crucifix, E. Driesschaert, T. Fichefet, C.D. Hewitt, M. Kageyama, A. Kitoh, A. Laîné, M.-F. Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, S.L. Weber, Y. Yu and Y. Zhao. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Clim. Past. 3: 261–277.CrossrefGoogle Scholar

  • Breed, W.G. 2004. The spermatozoon of eurasian murine rodents: Its morphological diversity and evolution. J. Morphol. 261: 52–69.PubMedCrossrefGoogle Scholar

  • Breed, W.G., G.A. Cox, C.M. Leigh and P. Hawkins. 1988. Sperm head structure of a murid rodent from southern Africa: the red veld rat Aethomys chrysophilus. Gamete Res. 19: 191–202.CrossrefPubMedGoogle Scholar

  • Bryja, J., L. Granjon, G. Dobigny, H. Patzenhauerová, A. Konečný, J.M. Duplantier, P. Gauthier, M. Colyn, L. Durnez, A. Lalis and V. Nicolas. 2010. Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Mol. Ecol. 19: 4783–4799.CrossrefPubMedGoogle Scholar

  • Bryja, J., O. Mikula, R. Šumbera, Y. Meheretu, T. Aghová, L.A. Lavrenchenko, V. Mazoch, N. Oguge, J.S. Mbau, K. Welegerima, N. Amundala, M. Colyn, H. Leirs and E. Verheyen. 2014. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol. Biol. 14: 256.PubMedCrossrefGoogle Scholar

  • Castiglia, R., M. Corti, P. Colangelo, F. Annesi, E. Capanna, W. Verheyen, A.M. Sichilima and R. Makundi. 2003. Chromosomal and molecular characterization of Aethomys kaiseri from Zambia and Aethomys chrysophilus from Tanzania (Rodentia, Muridae). Hereditas. 139: 81–89.PubMedGoogle Scholar

  • Chimimba, C.T. 1998. A taxonomic synthesis of southern African Aethomys (Rodentia: Muridae) with a key to species. Mammalia 62: 427–438.Google Scholar

  • Chimimba, C.T. and A. V. Linzey. 2008. Aethomys ineptus (Rodentia: Muridae). Mamm. Species. 809: 1–7.CrossrefGoogle Scholar

  • Chimimba, C.T., N.J. Dippenaar and T.J. Robinson. 1999. Morphometric and morphological delineation of southern African species of Aethomys (Rodentia: Muridae). Biol. J. Linn. Soc. 67: 501–527.CrossrefGoogle Scholar

  • Colangelo, P., E. Verheyen, H. Leirs, C. Tatard, C. Denys, G. Dobigny, J.M. Duplantier, C. Brouat, L. Granjon and E. Lecompte. 2013. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 108: 901–916.CrossrefGoogle Scholar

  • Cotterill, F.P.D. 2003. A biogeographic review of tsessebe antelopes, Damaliscus lunatus (Bovidae: Alcelaphini), in south-central Africa. Durban Museum Novit. 28: 45–55.Google Scholar

  • Crawford-Cabral, J. 1998. The Angolan rodents of the superfamily Muroidea: an account of their distribution. Instituto de Investigação Científica Tropical, Estudos, Ensaios e Documentos, Vol. 161, pp. 1–222.Google Scholar

  • Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9: 772.PubMedCrossrefGoogle Scholar

  • Deino, A.L. and S.H. Ambrose. 2007. 40Ar/39Ar dating of the Lemudong’o late Miocene fossil assemblages, southern Kenya rift. Kirtlandia. 56: 65–71.Google Scholar

  • deMenocal, P.B. 1995. Plio-Pleistocene African climate. Science 270: 53–59.CrossrefPubMedGoogle Scholar

  • Demos, T.C., J.C. Kerbis Peterhans, B. Agwanda and M.J. Hickerson. 2014. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol. Phylogenet. Evol. 71: 41–54.CrossrefPubMedGoogle Scholar

  • Dobigny, G., C. Tatard, P. Gauthier, K. Ba, J.-M. Duplantier, L. Granjon and G.J. Kergoat. 2013. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats pleistocene history. PLoS One 8: e77815.CrossrefPubMedGoogle Scholar

  • Dobigny, G., J. Britton-Davidian and T.J. Robinson. 2015. Chromosomal polymorphism in mammals: an evolutionary perspective. Biol. Rev. 92: 1–21.Google Scholar

  • Drummond, A.J., S.Y.W. Ho, M.J. Phillips and A. Rambaut. 2006. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 4: e88.CrossrefPubMedGoogle Scholar

  • Ducroz, J.F., V. Volobouev and L. Granjon. 2001. An assessment of the systematics of Arvicanthine rodents using mitochondrial DNA sequences: evolutionary and biogeographical implications. J. Mamm. Evol. 8: 173–206.CrossrefGoogle Scholar

  • Fadda, C., R. Castiglia, P. Colangelo, M. Corti, R. Machang’u, A. Scanzani, P. Tesha, W. Verheyen and E. Capanna. 2001. The rodent fauna of Tanzania: a cytotaxonomic report from the Maasai Steppe (1999). Rend. Fis. Acc. Lincei 9: 29–49.Google Scholar

  • Faulkes, C.G., N.C. Bennett, F.P.D. Cotterill, W. Stanley, G.F. Mgode and E. Verheyen. 2011. Phylogeography and cryptic diversity of the solitary-dwelling silvery mole-rat, genus Heliophobius (family: Bathyergidae). J. Zool. 285: 324–338.CrossrefGoogle Scholar

  • Fennessy, J., T. Bidon, F. Reuss, V. Kumar, P. Elkan, M.A. Nilsson, M. Vamberger, U. Fritz and A. Janke. 2016. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26: 1–7.Google Scholar

  • Fu, Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 147: 915–925.PubMedGoogle Scholar

  • Funk, D.J. and K.E. Omland. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34: 397–423.CrossrefGoogle Scholar

  • Galan, M., M. Pagès and J.F. Cosson. 2012. Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS One 7: e48374.CrossrefPubMedGoogle Scholar

  • Galster, S., N.D. Burgess, J. Fjeldså, L.A. Hansen and C. Rahbek. 2007. One degree resolution databases of the distribution of 1085 species of mammals in Sub-Saharan Africa. On-line data source-Version 1.00. Zoological Museum, University of Copenhagen, Denmark. Available via http://www.daim.snm.ku.dk/african-vertebrates-searc.

  • Geraads, D., Z. Alemseged and H. Bellon. 2002. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K–40Ar ages of the associated volcanics. Tert. Res. 21: 113–122.Google Scholar

  • Gómez Montoto, L., C. Magaña, M. Tourmente, J. Martín-Coello, C. Crespo, J.J. Luque-Larena, M. Gomendio and E.R.S. Roldan. 2011. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One 6: e18173.PubMedCrossrefGoogle Scholar

  • Gordon, D.H. and I.L. Rautenbach. 1980. Species complexes in medically important rodents: chromosome studies of Aethomys, Tatera and Saccostomus (Rodentia: Muridae, Cricetidae). S. Afr. J. Sci. 76: 559–561.Google Scholar

  • Gordon, D.H. and C.R.B. Watson. 1986. Identification of cryptic species of rodents (Mastomys, Aethomys, Saccostomus) in the Kruger National Park. South African J. Zool. 21: 95–99.CrossrefGoogle Scholar

  • Gryseels, S., S.J.E. Baird, B. Borremans, R. Makundi, H. Leirs and J. Goüy de Bellocq. 2017. When viruses don’t go viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Pathogens 13: e1006073.CrossrefPubMedGoogle Scholar

  • Happold, D.C.D. (ed.). 2013. Volume III. Rodents, Hares and Rabbits. Bloomsbury Publishing, London. p. 789.Google Scholar

  • Haus, T., E. Akom, B. Agwanda, M. Hofreiter, C. Roos and D. Zinner. 2013. Mitochondrial diversity and distribution of African Green Monkeys (Chlorocebus Gray, 1870). Am. J. Primatol. 75: 350–360.PubMedCrossrefGoogle Scholar

  • Heled, J. and A.J. Drummond. 2012. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61: 138–149.CrossrefPubMedGoogle Scholar

  • Hijmans, R.J. 2012. Introduction to the ‘raster’ package (version 1.9–63). https://CRAN.R-project.org/package=raster.

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.CrossrefGoogle Scholar

  • Hijmans, R.J., S. Phillips, J. Leathwick and J. Elith. 2016. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo.

  • Huson, D.H. and D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23: 254–267.Google Scholar

  • Indahl, U.G., K.H. Liland and T. Næs. 2009. Canonical partial least squares-a unified PLS approach to classification and regression problems. J. Chemom. 23: 495–504.CrossrefGoogle Scholar

  • Irwin, D.M., T.D. Kocher and A.C. Wilson. 1991. Evolution of cytochrome-b gene in mammals. J. Mol. Evol. 32: 128–144.CrossrefPubMedGoogle Scholar

  • Johnson, T.C., J.P. Werne, E.T. Brown, A. Abbott, M. Berke, J. Halbur, S. Contreras – Quintana, S. Grossheusch, S. Schouten, J. Sinninghe Damsté, R. Lyons, C.A. Scholz, A. Cohen and J. King. 2016. A progressively wetter climate in Southern East Africa over the past million years. Quat. Int. 404: 174–175.CrossrefGoogle Scholar

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.CrossrefPubMedGoogle Scholar

  • Lehner, B. and P. Döll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296: 1–22.CrossrefGoogle Scholar

  • Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451–1452.CrossrefGoogle Scholar

  • Linzey, A.V. and C.T. Chimimba. 2008. Aethomys chrysophilus (Rodentia: Muridae). Mamm. Species. 808: 1–10.CrossrefGoogle Scholar

  • Linzey, A.V., M.H. Kesner, C.T. Chimimba and C. Newbery. 2003. Distribution of veld rat sibling species Aethomys chrysophilus and Aethomys ineptus (Rodentia: Muridae) in southern Africa. African Zool. 38: 169–174.CrossrefGoogle Scholar

  • Lorenzen, E.D., R. Heller and H.R. Siegismund. 2012. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 21: 3656–3670.CrossrefPubMedGoogle Scholar

  • Manthi, F.K. 2007. A preliminary review of the rodent fauna from Lemudong’o, southwestern Kenya, and its implication to the late Miocene paleoenvironments. Kirtlandia. 56: 92–105.Google Scholar

  • Maputla, N.W., E.R. Dempster, J. Raman and J.W.H. Ferguson. 2011. Strong hybrid viability between two widely divergent chromosomal forms of the pouched mouse. J. Zool. 285: 180–187.CrossrefGoogle Scholar

  • Matthey, R. 1958. Les chromosomes et la position systématique de quelques Murinae africains (Mammalia Rodentia). Acta Trop. 15: 7–117.Google Scholar

  • McDonough, M.M., R. Šumbera, V. Mazoch, A.W. Ferguson, C.D. Phillips and J. Bryja. 2015. Multilocus phylogeography of a widespread savanna-woodland adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa’s Zambezi region. Mol. Ecol. 24: 5248–5266.PubMedCrossrefGoogle Scholar

  • Medarde, N., J. Martínez-Vargas, A. Sánchez-Chardi, M.J. López-Fuster and J. Ventura. 2013. Effect of Robertsonian translocations on sperm head form in the house mouse. Biol. J. Linn. Soc. 110: 878–889.CrossrefGoogle Scholar

  • Medarde, N., V. Merico, M.J. López-Fuster, M. Zuccotti, S. Garagna and J. Ventura. 2015. Impact of the number of Robertsonian chromosomes on germ cell death in wild male house mice. Chromosom. Res. 23: 159–169.CrossrefGoogle Scholar

  • Mein, P., M. Pickford and B. Senut. 2004. Late Miocene micromammals from the Harasib karst deposits, Namibia. Pt. 2b. Cricetomyidae, Dendromuridae and Muridae, with an addendum on the Myocricetodontinae. Commun. Geol. Surv. Namibia. 13: 43–62.Google Scholar

  • Merow, C., M.J. Smith and J.A. Silander. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36: 1058–1069.CrossrefGoogle Scholar

  • Mevik, B.-H., R. Wehrens and K.H. Liland. 2015. pls: Partial Least Squares and Principal Component Regression. https://CRAN.R-project.org/package=pls.

  • Mikula, O., R. Šumbera, T. Aghová, J.S. Mbau, A.S. Katakweba, C.A. Sabuni and J. Bryja. 2016. Evolutionary history and species diversity of African pouched mice (Rodentia: Nesomyidae: Saccostomus). Zool. Scr. 45: 595–617.CrossrefGoogle Scholar

  • Miller, M.A., W. Pfeiffer and T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: (Gateway Computing Environments Workshop (GCE), 2010). IEEE, New Orleans, LA, USA, pp. 1–8.Google Scholar

  • Mitteroecker, P., P. Gunz, M. Bernhard, K. Schaefer and F.L. Bookstein. 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. J. Hum. Evol. 46: 679–698.CrossrefPubMedGoogle Scholar

  • Moodley, Y. and M.W. Bruford. 2007. Molecular biogeography: towards an integrated framework for conserving Pan-African biodiversity. PLoS One 2: e454.CrossrefPubMedGoogle Scholar

  • Muscarella, R., P.J. Galante, M. Soley-Guardia, R.A. Boria, J.M. Kass, M. Uriarte and R.P. Anderson. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 5: 1198–1205.CrossrefGoogle Scholar

  • Musser, G.G. and M.D. Carleton. 2005. Superfamily Muroidea. In: (D.E., Wilson and D.M. Reeder, eds.) Mammal species of the world: a taxonomic and geographic reference. 3rd ed. Johns Hopkins University Press, Baltimore, MD. pp. 894–1531.Google Scholar

  • Nicolas, V., J.F. Mboumba, E. Verheyen, C. Denys, E. Lecompte, A. Olayemi, A.D. Missoup, P. Katuala and M. Colyn. 2008. Phylogeographic structure and regional history of Lemniscomys striatus (Rodentia: Muridae) in tropical Africa. J. Biogeogr. 35: 2074–2089.CrossrefGoogle Scholar

  • Nicolas, V., A.D. Missoup, C. Denys, J.C. Kerbis Peterhans, P. Katuala, A. Couloux and M. Colyn. 2011. The roles of rivers and Pleistocene refugia in shaping genetic diversity in Praomys misonnei in tropical Africa. J. Biogeogr. 38: 191–207.CrossrefGoogle Scholar

  • Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W. Wettengel, P. Hedao, K.R. Kassem, E.D. Wikramanaya, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W. Wettengel, P. Hedao and K.R. Kassem. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience. 51: 933.CrossrefGoogle Scholar

  • Otto-Bliesner, B.L., S.J. Marshall, J.T. Overpeck, G.H. Miller and A. Hu. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751–1753.CrossrefPubMedGoogle Scholar

  • Paradis, E. 2010. Pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419–420.CrossrefGoogle Scholar

  • Paradis, E., J. Claude and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20: 289–290.CrossrefGoogle Scholar

  • Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231–259.CrossrefGoogle Scholar

  • Phukuntsi, M.A., H. Brettschneider, D.L. Dalton, T. Kearney, J. Badenhorst and A. Kotze. 2016. DNA barcoding for identification of cryptic species in the field and existing museum collections: a case study of Aethomys and Micaelamys (Rodentia: Muridae). African Zoology 2016: 1–8.Google Scholar

  • Rambaut, A. and A.J. Drummond. 2013. Tracer 1.6. University of Edinburgh, Edinburgh.Google Scholar

  • Ravelo, A.C., D.H. Andreasen, M. Lyle, A. Olivarez Lyle and M.W. Wara. 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429: 263–267.CrossrefPubMedGoogle Scholar

  • R Core Team. 2016. R: a language and environment for statistical computing.Google Scholar

  • Rogers, A.R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552–569.PubMedGoogle Scholar

  • Rohlf, F.J. 2015. tpsDig 2.18 Department of Ecology and Evolution, State University of New York, Stony Brook. Avalibale at: http://life.bio.sunysb.edu/morph.

  • Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard and J.P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539–542.CrossrefPubMedGoogle Scholar

  • Russo, I.M., C.T. Chimimba and P. Bloomer. 2006. Mitochondrial DNA differentiation between two species of Aethomys (Rodentia: Muridae) from southern Africa. J. Mammal. 87: 545–553.CrossrefGoogle Scholar

  • Russo, I.M., C.T. Chimimba and P. Bloomer. 2010. Bioregion heterogeneity correlates with extensive mitochondrial DNA diversity in the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from southern Africa – evidence for a species complex. BMC Evol. Biol. 10: 307.CrossrefPubMedGoogle Scholar

  • Schefuss, E., S. Schouten, J.H.F. Jansen and J.S.S. Damsté. 2003. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422: 418–421.CrossrefPubMedGoogle Scholar

  • Shanahan, T.M., N.P. McKay, K.A. Hughen, J.T. Overpeck, B. Otto-Bliesner, C.W. Heil, J. King, C.A. Scholz and J. Peck. 2015. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8: 140–144.CrossrefGoogle Scholar

  • Skinner, J.D. and C.T. Chimimba. 2005. The mammals of the southern African sub-region (3rd ed.). Cambridge University Press, Cambridge. p. 872.Google Scholar

  • Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.CrossrefPubMedGoogle Scholar

  • Stamatakis, A., P. Hoover and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57: 758–771.PubMedCrossrefGoogle Scholar

  • Stanhope, M.J., J. Czelusniak, J.-S. Si, J. Nickerson and M. Goodman. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol. Phylogenet. Evol. 1: 148–160.CrossrefGoogle Scholar

  • Suwa, G., Y. Beyene, H. Nakaya, R.L. Bernor, J.-R. Boisserie, F. Bibi, S.H. Ambrose, K. Sano, S. Katoh and B. Asfaw. 2015. Newly discovered cercopithecid, equid and other mammalian fossils from the Chorora Formation, Ethiopia. Anthropol. Sci. 123: 19–39.CrossrefGoogle Scholar

  • Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.Google Scholar

  • Teeling, E.C., M. Scally, D.J. Kao, M.L. Romagnoli, M.S. Springer, and M.J. Stanhope. 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–192.PubMedCrossrefGoogle Scholar

  • Varea-Sánchez, M., L. Gómez Montoto, M. Tourmente and E.R.S. Roldan. 2014. Postcopulatory sexual selection results in spermatozoa with more uniform head and flagellum sizes in rodents. PLoS One 9: e108148.PubMedCrossrefGoogle Scholar

  • Verheyen, W., J. Hulselmans, W. Wendelen, H. Leirs and M. Corti. 2011. Contribution to the systematics and zoogeography of the East-African Acomys. Zootaxa. 3059: 1–35.Google Scholar

  • Vincens, A., G. Buchet, D. Williamson and M. Taieb. 2005. A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): New data on vegetation dynamics and climate in Central Eastern Africa. Rev. Palaeobot. Palynol. 137: 147–162.CrossrefGoogle Scholar

  • Visser, D.S. and T.J. Robinson. 1986. Cytosystematics of the South African Aethomys (Rodentia: Muridae). South African J. Zool. 21: 264–268.CrossrefGoogle Scholar

  • Visser, D.S. and T.J. Robinson. 1987. Systematic implications of spermatozoan and bacular morphology for the South African Aethomys. Mammalia 51: 447–454.Google Scholar

  • Warren, D.L. and S.N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21: 335–342.CrossrefPubMedGoogle Scholar

  • Zinner, D., L.F. Groeneveld, C. Keller and C. Roos. 2009. Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization? BMC Evol. Biol. 9: 83.CrossrefPubMedGoogle Scholar

  • Zinner, D., J. Wertheimer, R. Liedigk, L.F. Groeneveld and C. Roos. 2013. Baboon phylogeny as inferred from complete mitochondrial genomes. Am. J. Phys. Anthropol. 150: 133–140.PubMedCrossrefGoogle Scholar

About the article

aVladimír Mazoch and Ondřej Mikula: These authors contributed equally to this article.


Received: 2017-01-07

Accepted: 2017-06-28

Published Online: 2017-10-12


Citation Information: Mammalia, 20170001, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2017-0001.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in