Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mammalia

Editor-in-Chief: Denys, Christiane

6 Issues per year


IMPACT FACTOR 2017: 0.714
5-year IMPACT FACTOR: 0.816

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.433
Source Normalized Impact per Paper (SNIP) 2017: 0.603

Online
ISSN
1864-1547
See all formats and pricing
More options …
Ahead of print

Issues

Wintering range of Pipistrellus nathusii (Chiroptera) in Central Europe: has the species extended to the north-east using urban heat islands?

Konrad Sachanowicz / Mateusz Ciechanowski
  • Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk 80-308, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Tryjanowski
  • Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, Poznań 60-625, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Z. Kosicki
  • Corresponding author
  • Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Umultowska 89, Poznań 61-614, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/mammalia-2018-0014

Abstract

Recent climate warming is thought to affect the migratory behavior and geographical range shifts of Pipistrellus nathusii. This bat of the European temperate woodland zone is known to migrate up to 1900 km between its breeding and wintering areas where it uses overground roosts for hibernation. New wintering areas of the species have been recorded lately mainly in the cities of Central Europe, largely extending its winter distribution to the north-east. The growing detection of the winter occurrence of P. nathusii has coincided with an increase in mean winter temperatures and urban warming. Our analysis shows that a winter isotherm of −2.5°C acts as a border for the winter occurrence of P. nathusii, and the species uses urban areas, most likely benefiting from the effect of urban heat islands. Accordingly, the island-like pattern of P. nathusii’s regular wintering habitats distribution in Central Europe seems to reflect the thermal and structural diversity of the environment. The use of diverse anthropogenic roosts suggests that the species is well-adapted to urban habitats, thus demonstrating its ecological plasticity.

Keywords: bats; climate warming; hibernation; migration; species distribution model; urban habitat

References

  • Anděra, M. and V. Hanák. 2007. Atlas of the mammals of the Czech Republic. A provisional version. Bats, Part 3. (Vespertilionid bats – Vespertilio, Eptesicus, Nyctalus, Pipistrellus and Hypsugo). Národní Muzeum, Praha. pp. 172.Google Scholar

  • Arnfield, A.J. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23: 1–26.CrossrefGoogle Scholar

  • Bartoń, K. 2013. MuMIn: multi-model inference. R package version 1.9.0.Google Scholar

  • Bauer, K. and J. Wirth. 1979. Die Rauhhautfledermaus Pipistrellus nathusii Keyserling & Blasius, 1839 (Chiroptera, Vespertilionidae) in Österreich. Ann. Natur. Mus. Wien 82: 373–385.Google Scholar

  • Benda, P. and J. Hotový. 2004. Hibernation record of Pipistrellus nathusii in southern Moravia (Czech Republic). Vespertilio 8: 137–139 (in Czech with English summary).Google Scholar

  • Brázdil, R. and M. Budíková. 1999. An urban bias in air temperature fluctuations at the Klementinum, Prague, the Czech Republic. Atmos. Environ. 33: 4211–4217.CrossrefGoogle Scholar

  • Burnham, K.P. and D.R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). Springer-Verlag Inc., New York. pp. 515.Google Scholar

  • Christopoulos, T.D. 2016. Inflection. Finds the inflection point of a Curve. R package version 1.2.Google Scholar

  • DeLong, E.R., D.M. DeLong and D.L. Clarke-Pearson. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837–845.CrossrefPubMedGoogle Scholar

  • Dietz, C., O.V. Helversen and D. Nill. 2009. Bats of Britain, Europe and Northeastern Africa. A&C Black, London. pp. 400.Google Scholar

  • Doll, C.N.H., J-P. Muller and J.G. Morley. 2007. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 57: 75–92.Google Scholar

  • Elith, J., C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC. M. Overton, A.T. Peterson, S.J. Phillips, K. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wisz and N.E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossrefGoogle Scholar

  • Freitag, B. 1994. Pipistrellus nathusii (Keyserling & Blasius, 1839) – über eine Winterschlafgemeinschaft der Rauhhautfledermaus und weitere Funde in Graz. Mitt Naturwiss. Ver. Steiermark 124: 243–245.Google Scholar

  • Gerber, R. 1956. Zum Vorkomen der Fledermäuse in Nordwestsachsen. Z. Säugetierk. 21: 142–148.Google Scholar

  • GRASS Development Team. 2015. Geographic Resources Analysis Support System (GRASS) Programmer’s manual. Open Source Geospatial Foundation. Electronic document: http://grass.osgeo.org/programming7/.

  • Haensel, J. 1997. Rauhhautfledermäuse (Pipistrellus nathusii) überwintern vereinzelt in Berlin. Nyctalus (N.F.) 6: 372–374.Google Scholar

  • Hanák, V., J. Neckářová, P. Benda, V. Hanzal, M. Anděra, I. Horáček, H. Jahelková, A. Zieglerová and D. Zieglerová. 2009. Fauna netopýrů Prahy: přehled nálezů a poznámky k urbánním populacím netopýrů. Natura Pragensis, 19: 3–89.Google Scholar

  • Hastie, T. and R. Tibshirani. 1990. Generalized additive models. Chapman and Hall, London. pp. 352.Google Scholar

  • Hawth’s Analysis Tools. 2006. Hawth’s analysis tools for ArcGIS.Google Scholar

  • Heiberger, R.M. 2013. Statistical analysis and data display: Heiberger and Holland. R package version 2.3–37.Google Scholar

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.CrossrefGoogle Scholar

  • Horn, A., C. Kerdelhué and J.P. Rossi. 2012. Predicting the distribution of the two bark beetles Tomicus destruens and Tomicus piniperda in Europe and the Mediterranean region. Agr. Forest. Entomol. 14: 358–366.CrossrefGoogle Scholar

  • Jahelková, H., J. Neckářová, A. Bláhová, M. Sasínková, D. Weinfurtová, Z. Hybnerová, V. Čermáková and D. Zieglerová. 2014. First record of Hypsugo savii in Prague and summary of winter records of Pipistrellus nathusii from Prague and close surroundings (Czech Republic). Vespertilio 17: 95–101.Google Scholar

  • Jarzembowski, T. 2003. Migration of the Nathusius’ pipistrelle Pipistrellus nathusii (Vespertilionidae) along the Vistula Split. Acta Theriol. 48: 301–308.CrossrefGoogle Scholar

  • Kożuchowski, J. 2011. Klimat Polski. Nowe spojrzenie [The climate of Poland. New perspective]. Polish Scientific Publishers, Warszawa. pp. 296. [in Polish].Google Scholar

  • Kożuchowski, J., J. Trepińska and J. Wibig. 1994. The air temperature in Cracow from 1826 to 1990: persistence, fluctuations and the urban effect. Int. J. Climatol. 14: 1035–1049.CrossrefGoogle Scholar

  • Kurskov, A.N. 1981. Rukokryle Belorussii [Bats of Belarus]. Nauka i Technika [in Russian]. pp. 135.Google Scholar

  • Lehotská, B. and M. Petrášová. 2008. Rozšírenie a ekologické nároky netopierov rodu Pipistrellus v nížinných oblastiach západného Slovenska v mimohibernačnom období. Acta Envir. Univ. Comenianae (Bratislava) 14: 61–70.Google Scholar

  • Lundy, M., I. Montgomery and J. Russ. 2010. Climate change-linked range expansion of Nathusius’ pipistrelle bat Pipistrellus nathusii (Keyserling & Blasius, 1839). J. Biogeogr. 37: 2232–2242.CrossrefGoogle Scholar

  • Marosz, M., R. Wójcik, D. Biernacik, E. Jakusik, M. Pilarski, M. Owczarek and M. Miętus. 2011. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu KLIMAT. [Variability in the climate of Poland since the half of XX century. Results of the KLIMAT project]. Prace Stud. Geogr. 47: 51–66 [in Polish with English summary].Google Scholar

  • Newton, I. 2008. The migration ecology of birds. Academic Press, London. pp. 984.Google Scholar

  • Ohlendorf, B., B. Hecht, D. Leupold, P. Busse, E. Leuthold, A. Bäcker and M. Kahl. 2002. Zum Vorkommen der Rauhhautfledermaus (Pipistrellus nathusii) in Sachsen-Anhalt. Nyctalus (N.F.) 8: 211–222.Google Scholar

  • Paradis, E. 2016. Ape library for R: analyses of phylogenetics and evolution ver: 3.5.Google Scholar

  • Parmesan, C. and G.A. Yohe. 2003. Globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.PubMedCrossrefGoogle Scholar

  • Pētersons, G. 2004. Seasonal migrations of north-eastern populations of Nathusius’ bat Pipistrellus nathusii (Chiroptera). Myotis 41/42: 29–56.Google Scholar

  • Presetnik, P., K. Koselj, M. Zagmajster, N. Zupančič, K. Jazbec, U. Žibrat, A. Petrinjak and A. Hudoklin. 2009. Atlas netopirjev (Chiroptera) Slovenije [Atlas of bats (Chiroptera) of Slovenia]. Center for Cartography of Fauna and Flora, Ljubljana. pp. 152.Google Scholar

  • Řehák, Z. and M. Foral. 1992. The first winter record of Pipistrellus nathusii (Chiroptera, Vespertilionidae) in Czechoslovakia. Myotis 30: 119–122.Google Scholar

  • Reino, L., M. Portod, R. Morgado, F. Carvalhof, A. Miraf and P. Bejac. 2010. Does afforestation increase bird nest predation risk in surrounding farmland? Forest Ecol. Manage. 260: 1359–1366.Google Scholar

  • Reiter, G., U. Hüttmeir, M. Jerabek, K. Krainer, S. Pysarczuk and A. Vorauer. 2006. Koordinationsstelle für Fledermausschutz und – forschung in Österreich (KFFÖ). Jahresbericht 2005. KFFÖ, Alkoven, Salzburg, Klagenfurt & Linz. pp. 36.Google Scholar

  • Roer, H. 1975. Weitere Nachweise der Rauhhautfledermaus (Pipistrellus nathusii) in Mitteleuropa. Myotis 13: 65–67.Google Scholar

  • Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q.G. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C.Z. Liu, S. Rawlins and A. Imeson. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353–357.PubMedCrossrefGoogle Scholar

  • Sachanowicz, K. and M. Ciechanowski. 2006. First winter record of the migratory bat Pipistrellus nathusii (Keyserling & Blasius 1839) (Chiroptera: Vespertilionidae) in Poland: yet more evidence of global warming? Mammalia 70: 168–169.Google Scholar

  • Sachanowicz, K., A. Wower and A.-T. Bashta. 2006. Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterol. 8: 543–548.CrossrefGoogle Scholar

  • Santana, J., M. Porto, L. Gordinho, L. Reino and P. Beja. 2012. Long-term responses of Mediterranean birds to forest fuel management. J. Appl. Ecol. 49: 632–643.Google Scholar

  • Schmidt, A. 1994. Phänologisches Verhalten und Populationseigenschaften der Rauhhautfledermaus, Pipistrellus nathusii (Keyserling und Blasius, 1839), in Ostbrandenburg. Teil 1 and 2. Nyctalus (N.F.) 5: 123–148.Google Scholar

  • Schmidt, A. 2000. 30-jährige Untersuchungen in Fledermauskastengebieten Ostbrandenburgs unter besonderer Berücksichtigung von Rauhhautfledermaus (Pipistrellus nathusii) und Abendsegler (Nyctalus noctula). Nyctalus (N.F.) 7: 396–422.Google Scholar

  • Schmidt, A. 2002. Veränderungen bei Erst- und Letztbeobachtungen von Abendseglern (Nyctalus noctula) und Rauhhautfledermäusen (Pipistrellus nathusii) in den letzten drei Jahrzehnten in Ostbrandenburg. Nyctalus (N.F.) 8: 339–344.Google Scholar

  • Schmidt, A. 2010. Zum Überwinterungsverhalten des Abendseglers (Nyctalus noctula) in Ost-Brandenburg. Nyctalus (N.F.) 15: 223–234.Google Scholar

  • Sing, T., O. Sander, N. Beerenwinkel and T. Lengauer. 2015. ROCR: visualizing the performance of scoring classifiers. R package version 1.0–7.Google Scholar

  • Small, C., F. Pozzi and C.D. Elvidge. 2005. Spatial analysis of global urban extent from DMSP-OLS nighttime lights. Remote Sens. Environ. 96: 277–291.CrossrefGoogle Scholar

  • Spitzenberger, F. and K. Bauer. 2001. Rauhhautfledermaus Pipistrellus nathusii (Keyserling & Blasius, 1839). In: (F. Spitzenberger, ed.) Die Säugetierfauna Österreichs. Bund esministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Graz. pp. 239–244.Google Scholar

  • Spitzenberger, F., P. Mildner and M. Preleuthner. 1995. Die Säugetiere Kärntens. Teil. 1. Insektenfresser, Fledermäuse, Hasentiere, Hörnchenartige, Schläfer und Hüpfmäuse. Carinthia II 185/105: 247–352.Google Scholar

  • Strelkov, P.P. 2001. Materials on wintering of migratory bat species (Chiroptera) on the territory of the former USSR and adjacent regions. Part 1. Vespertilio murinus L. Plecotus et al. 4: 25–40.Google Scholar

  • Strelkov, P.P. 2002. Materials on wintering of migratory bat species (Chiroptera) on the territory of the former USSR and adjacent regions. Part 2. Nyctalus noctula. Plecotus et al. 5: 35–56.Google Scholar

  • Tryjanowski, P., T.H. Sparks, S. Kuźniak, P. Czechowski and L. Jerzak. 2013. Bird migration advances more strongly in urban environments. PLoS One 8: e63482.CrossrefPubMedGoogle Scholar

  • Vierhaus, H. 2004. Pipistrellus nathusii (Keyserling und Blasius, 1839) – Rauhhautfledermaus. In: (J. Niethammer and F. Krapp, eds.) Handbuch der Säugetiere Europas. Band 4: Fledertiere. Part II: Chiroptera II. Aula-Verlag, Wiebelsheim. pp. 825–873.Google Scholar

  • Weisberg, S. 1980. Applied linear regression. Wiley, New York. pp. 324.Google Scholar

  • Whittingham, M.J., R.D. Swetnam, J.D. Wilson, D.E. Chamberlain and R.P. Freckleton. 2005. Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: Implications for conservation management. J. Appl. Ecol. 42: 270–280.CrossrefGoogle Scholar

  • Wood, S. 2013. mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version 1.7–22.Google Scholar

About the article

Received: 2018-01-24

Accepted: 2018-07-05

Published Online: 2018-08-11


Citation Information: Mammalia, 20180014, ISSN (Online) 1864-1547, ISSN (Print) 0025-1461, DOI: https://doi.org/10.1515/mammalia-2018-0014.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in