Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Vespri, Vincenzo / Marano, Salvatore Angelo


IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2018: 152.31

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 1, Issue 3

Issues

Volume 13 (2015)

A necessary and sufficient condition for the existence of an exponential attractor

Dalibor Pražák
Published Online: 2003-09-01 | DOI: https://doi.org/10.2478/BF02475219

Abstract

We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.

Keywords: global attractor; exponential attractor; fractal dimension; wave equation; nonlinear damping

Keywords: 37L25; 37L30; 35L70

  • [1] [EFNT] A. Eden, C. Foias, B. Nicolaenko, R. Temam: Exponential attractors for dissipative evolution equations, Wiley & Masson, Chichester, Paris, 1994. Google Scholar

  • [2] [EM] M. Efendiev and A. Miranville: On the dimension of the global attractor for dissipative reaction-diffusion systems, Preprint. Google Scholar

  • [3] [EMZ] M. Efendiev, A. Miranville, S. Zelik: “Exponential attractors for a nonlinear reaction-diffusion system in R 3”, Comptes-Rendus de l’Académie des Sciences, Vol. 330, (2000), pp. 713–718. http://dx.doi.org/10.1016/S0764-4442(00)00259-7CrossrefGoogle Scholar

  • [4] [F] E. Feireisl: “Global attractors for semilinear damped wave equations with supercritical exponent”, J. Differential Equations, Vol. 116, (1995), pp. 431–447. http://dx.doi.org/10.1006/jdeq.1995.1042CrossrefGoogle Scholar

  • [5] [MP] J. Málek and D. Pražák: “Large time behavior via the method of ℓ-trajectories”, J. Differential Equations, Vol. 181, (2002), pp. 243–279. http://dx.doi.org/10.1006/jdeq.2001.4087CrossrefGoogle Scholar

  • [6] [P] D. Pražák: “On finite fractal dimension of the global attractor for the wave equation with nonlinear damping”, J. Dynamics Differential Equations, Vol. 14, (2002), pp. 763–776. http://dx.doi.org/10.1023/A:1020756426088CrossrefGoogle Scholar

About the article

Published Online: 2003-09-01

Published in Print: 2003-09-01


Citation Information: Open Mathematics, Volume 1, Issue 3, Pages 411–417, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475219.

Export Citation

© 2003 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jin Zhang, Peter E. Kloeden, Meihua Yang, and Chengkui Zhong
Discrete and Continuous Dynamical Systems, 2017, Volume 37, Number 6, Page 3487
[2]
Xingjie Yan and Wei Qi
International Journal of Bifurcation and Chaos, 2015, Volume 25, Number 05, Page 1550063
[3]
Ke Li and Zhijian Yang
Applied Mathematics and Computation, 2013, Volume 220, Page 155
[4]
GIULIO SCHIMPERNA
Mathematical Models and Methods in Applied Sciences, 2009, Volume 19, Number 06, Page 969
[5]
Yang Zhijian
Journal of Mathematical Physics, 2012, Volume 53, Number 3, Page 032702
[6]
Petr Kaplický and Dalibor Pražák
Journal of Mathematical Analysis and Applications, 2007, Volume 326, Number 1, Page 75
[7]
Maurizio Grasselli, Giulio Schimperna, and Sergey Zelik
Communications in Partial Differential Equations, 2009, Volume 34, Number 2, Page 137
[8]
Yang Zhijian
Journal of Mathematical Physics, 2010, Volume 51, Number 9, Page 092703
[9]
Dalibor Pražák
Bulletin of the Australian Mathematical Society, 2007, Volume 76, Number 02, Page 285
[10]
Dalibor Pražák
Mathematical Methods in the Applied Sciences, 2007, Volume 30, Number 17, Page 2197
[11]
Alain Miranville
Central European Journal of Mathematics, 2006, Volume 4, Number 1, Page 163
[12]
Dalibor Pražák
Central European Journal of Mathematics, 2006, Volume 4, Number 4, Page 635

Comments (0)

Please log in or register to comment.
Log in