Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 1, Issue 4 (Dec 2003)

Issues

Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field

Michael Melgaard
Published Online: 2003-12-01 | DOI: https://doi.org/10.2478/BF02475180

Abstract

For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions of the scattering matrix are derived as the energy parameter tends to the lowest Landau threshold.

Keywords: Near-threshold resolvent expansions; scattering matrix; auxiliary one-dimensional Schrödinger operator

Keywords: 47N20; 35J10 35P25 47F05 81U05

  • [1] M. Abramovitz and I. Stegun: Handbook of Mathematical Functions, Dover Publications. New York, 1972. Google Scholar

  • [2] S. Albeverio, D. Bollé, F. Gesztesy, R. Hoegh-Krohn: “Low-energy parameters in nonrelativistic scattering theory”, Ann. Physics, Vol. 148, (1983), pp.308–326. http://dx.doi.org/10.1016/0003-4916(83)90242-7CrossrefGoogle Scholar

  • [3] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn: “The low energy expansion in nonrelativistic scattering theory”, Ann. Inst. H. Poincaré Sect. A (N.S.), Vol. 37, (1982), pp. 1–28. Google Scholar

  • [4] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, L. Streit: “Charged particles with short range interactions”, Ann. Inst. H. Poincaré Sect. A (N.S.), Vol. 38, (1983), pp. 263–293. Google Scholar

  • [5] J.E. Avron, I. Herbst, B. Simon: “Schrödinger operators with magnetic fields. I. General interactions”, Duke Math. J., Vol. 45, (1978), pp. 847–883. http://dx.doi.org/10.1215/S0012-7094-78-04540-4CrossrefGoogle Scholar

  • [6] Ju. M. Berezanskii: Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs Vol. 17, American Mathematical Society, Providence, Rhode Island, 1968. Google Scholar

  • [7] D. Bollé: “Schrödinger operators at threshold”, In: S. Albeverio, J.E. Fenstad, H. Holden, T. Lindström (Eds.): Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), Cambridge University Press, Cambridge, 1992, pp. 173–196. Google Scholar

  • [8] D. Bollé, F. Gesztesy, C. Danneels: “Threshold scattering in two dimensions”, Ann. Inst. H. Poincaré Phys. Théor., Vol. 48, (1988), pp. 175–204. Google Scholar

  • [9] D. Bollé, F. Gesztesy, M. Klaus: “Scattering theory for one-dimensional systems with ∫dx V (x)=0”, J. Math. Anal. Appl., Vol.122, (1987) pp. 496–518. http://dx.doi.org/10.1016/0022-247X(87)90281-2Google Scholar

  • [10] D. Bollé, F. Gesztesy, C. Nessmann, L. Streit: “Scattering theory for general, nonlocal interactions: threshold behavior and sum rules”, Rep. Math. Phys., Vol. 23, (1986), pp. 373–408. http://dx.doi.org/10.1016/0034-4877(86)90032-7CrossrefGoogle Scholar

  • [11] D. Bollé, F. Gesztesy, S.F.J. Wilk: “A complete treatment of low-energy scattering in one dimension”, J. Operator Theory, Vol. 13, (1985), pp. 3–31. Google Scholar

  • [12] M. Cheney: “Two-dimensional scattering: the number of bound states from scattering data”, J. Math. Phys., Vol. 25, (1984), pp. 1449–1455. http://dx.doi.org/10.1063/1.526314CrossrefGoogle Scholar

  • [13] H.L. Cycon, R.G. Froese, W. Kirch, B. Simon: Schrödinger Operators—With Applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1987. Google Scholar

  • [14] P.G. Dodds and D.H. Fremlin: “Compact operators in Banach lattices”, Israel J. Math., Vol. 34, (1979), pp. 287–320. Google Scholar

  • [15] P.D. Hislop and I.M. Sigal: Introduction to Spectral Theory. With applications to Schrödinger operators, Applied Mathematical Sciences 113, Springer-Verlag New York, Inc., 1996. Google Scholar

  • [16] A. Jensen and T. Kato: “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., Vol. 46, (1979), pp. 583–611. http://dx.doi.org/10.1215/S0012-7094-79-04631-3CrossrefGoogle Scholar

  • [17] A. Jensen and M. Melgaard: “Perturbation of eigenvalues embedded at a threshold”, Proc. Roy. Soc. Edinburgh Sect., Vol. 131 A, (2002), pp. 163–179. Google Scholar

  • [18] A. Jensen, E. Mourre, P. Perry: “Multiple commutator estimates and resolvent smoothness in quantum scattering theory”, Ann. Inst. Henri Poincaré, Vol. 41, (1984), pp. 207–225. Google Scholar

  • [19] A. Jensen: “Scattering theory for Stark Hamiltonians”, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 104, (1994), pp. 599–651. Google Scholar

  • [20] T. Kato: Perturbation Theory for Linear Operators, Volume 132 of Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, second edition, 1976. Google Scholar

  • [21] M. Klaus and B. Simon: “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Commun. Math. Phys., Vol. 78, (1980), pp. 251–281. http://dx.doi.org/10.1007/BF01942369CrossrefGoogle Scholar

  • [22] V.V. Kostrykin, A.A. Kvitsinsky, S.P. Merkuriev: “Potential scattering in a constant magnetic field: spectral asymptotics and Levinson formula”, J. Phys. A: Math. Gen., Vol. 28, (1995), pp. 3493–3509. http://dx.doi.org/10.1088/0305-4470/28/12/021CrossrefGoogle Scholar

  • [23] S.T. Kuroda: An Introduction to Scattering Theory, Aarhus University, Matematisk Institut, Lecture Notes Series, 1978. Google Scholar

  • [24] I. Laba: “Long-range one-particle scattering in a homogeneous magnetic field”, Duke Math. J., Vol. 70, (1993), pp. 283–303. http://dx.doi.org/10.1215/S0012-7094-93-07005-6CrossrefGoogle Scholar

  • [25] M.R.C. McDowell and M. Zarcone: “Scattering in strong magnetic fields”, Adv.At. Mol. Phys., Vol. 21, (1986), pp. 255–304. http://dx.doi.org/10.1016/S0065-2199(08)60144-XCrossrefGoogle Scholar

  • [26] M. Melgaard: “Spectral properties in the low-energy limit of one-dimensional Schrödinger operators. The case 〈1, V1〉≠0”, Math. Nachr., Vol. 238, (2002), pp. 113–143. http://dx.doi.org/10.1002/1522-2616(200205)238:1<113::AID-MANA113>3.0.CO;2-DGoogle Scholar

  • [27] M. Melgaard: “Spectral properties in the low-energy limit of one-dimensional Schrödinger operators. The case 〈1, V1〉=0”, in preparation. Google Scholar

  • [28] M. Melgaard: “Spectral properties at a threshold for two-channel Hamiltonians. I. Abstract theory”, J. Math. Anal. Appl., Vol. 256, (2001), pp. 281–303. http://dx.doi.org/10.1006/jmaa.2000.7325CrossrefGoogle Scholar

  • [29] E. Mourre: “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math. Phys., Vol. 78, (1981), pp. 391–408. http://dx.doi.org/10.1007/BF01942331CrossrefGoogle Scholar

  • [30] R.G. Newton: “Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum”, J. Math. Phys., Vol. 18, (1977), pp. 1348–1357. http://dx.doi.org/10.1063/1.523428CrossrefGoogle Scholar

  • [31] R.G. Newton: “Nonlocal interactions; the generalized Levinson theorem and the structure of the spectrum”, J. Math. Phys., Vol. 18, (1977), pp. 1582–1588. http://dx.doi.org/10.1063/1.523466CrossrefGoogle Scholar

  • [32] R.G. Newton: “Bounds on the number of bound states for the Schrödinger equation in one and two dimensions”, J. Operator Theory, 10, (1983), pp. 119–125. Google Scholar

  • [33] P. Perry, I.M. Sigal, B. Simon: “Spectral analysis of N-body Schrödinger operators”, Ann. Math., Vol. 114, (1981), pp. 516–567. http://dx.doi.org/10.2307/1971301CrossrefGoogle Scholar

  • [34] L. Pitt: “A compactness condition for linear operators in function spaces”, J. Operator Theory, Vol. 1, (1979) pp. 49–54. Google Scholar

  • [35] M. Reed and B. Simon: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press Inc., 1975. Google Scholar

  • [36] M. Reed and B. Simon: Methods of modern mathematical physics. IV: Analysis of operators, Academic Press Inc., London, 1978. Google Scholar

  • [37] M. Schechter: Spectra of Partial Differential Operators, First edition, North-Holland, Amsterdam, New York, Oxford, 1971. Google Scholar

  • [38] S.N. Solnyshkin: “Asymptotics of the energy of bound states of the Schrödinger operator in the presence of electric and homogeneous magnetic fields”, Sel. Math. Sov., Vol. 5, (1986), pp. 297–306. Google Scholar

  • [39] H. Tamura, “Magnetic scattering at low energy in two dimensions”, Nagoya Math. J., Vol. 155, (1999), pp. 95–151. Google Scholar

About the article

Published Online: 2003-12-01

Published in Print: 2003-12-01


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475180.

Export Citation

© 2003 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael Melgaard
Journal of Mathematical Physics, 2005, Volume 46, Number 8, Page 083507

Comments (0)

Please log in or register to comment.
Log in