Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 2, Issue 3 (Jun 2004)

Issues

Discrete limit theorems for general Dirichlet series. III

A. Laurinčikas / R. Macaitienė
Published Online: 2004-06-01 | DOI: https://doi.org/10.2478/BF02475231

Abstract

Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

Keywords: Dirichlet series; probability measure; random element; weak convergence

Keywords: 11M41; 30B50; 60B10

  • [1] P. Billingsley:Convergence of Probability Measures, Wiley, New York, 1968. Google Scholar

  • [2] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Erste Mitteilung.Acta Math., Vol. 54, (1930), pp. 1–35. CrossrefGoogle Scholar

  • [3] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Zweite Mitteilung,Acta Math., Vol. 54, (1932), pp. 1–55. Google Scholar

  • [4] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series IV”,Lith. Math. J., Vol. 43, No. 3, (2003), pp. 342–358;Lith. Math. J., Vol. 43, No. 3, (2003), pp. 281–294 (in Russian). http://dx.doi.org/10.1023/A:1026189318741CrossrefGoogle Scholar

  • [5] A. Laurinčikas:Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996. Google Scholar

  • [6] A. Laurinčikas: “Value distribution of general Dirichlet series”, In: B. Grigelionis et al. (Eds.):Probab. Theory and Math. Statistics; Proceedings of the seventh Vilnius, TEV, Vilnius, (1999), pp. 405–414. Google Scholar

  • [7] A. Laurinčikas: “Value distribution of general Dirichlet series. II”,Lith. Math. J., Vol. 41, No. 4, (2001), pp. 351–360. http://dx.doi.org/10.1023/A:1013860521038CrossrefGoogle Scholar

  • [8] A. Laurinčikas: “Limit theorems for general Dirichlet series”,Theory Stoch. Proc., Vol. 8, No. 24, (2002), pp. 256–268. Google Scholar

  • [9] A. Laurinčikas, W. Schwarz and J. Steuding: “Value distribution of general Dirichelet series. III”, In: A. Dubickas et al. (Eds.):Analytic and Probab. Methods in Number Theory. Proc. The Third Palanga Conf., TEV, Vilnius, (2002), pp. 137–156. Google Scholar

  • [10] A. Laurinčikas and R. Macaitienė: “Discrete limit theorems for general Dirichlet series. I,”Chebyshevski sbornik, Vol. 4, No. 3, (2003), pp. 156–170. Google Scholar

  • [11] R. Macaitienė: “Discrete limit theorems for general Dirichlet polynomials”,Lith. Math. J., Vol. 42 (spec. issue), (2002), pp. 705–709. Google Scholar

  • [12] R. Macaitienė: “Discrete limit theorems for general Dirichlet series. II”,Lith. Math. J., (to appear). Google Scholar

  • [13] H.L. Montgomery:Topics in multiplicative number theory, Springer, Berlin, 1971. Google Scholar

  • [14] E.M. Nikishin: “Dirichlet series with independent exponents and certain of their applications”,Matem.sb, Vol. 96, No. 1, (1975), pp. 3–40 (in Russian). Google Scholar

  • [15] Y.G. Sinai:Introduction to Ergodic Theory, Princeton Univ. Press, 1976. Google Scholar

  • [16] A.A. Tempelman:Ergodic Theorems on Groups, Mokslas, Vilnius, 1986. Google Scholar

About the article

Published Online: 2004-06-01

Published in Print: 2004-06-01


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475231.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Renata Macaitienė
Acta Applicandae Mathematicae, 2007, Volume 97, Number 1-3, Page 99
[3]
Renata Macaitiene
Analysis, 2007, Volume 26, Number 3, Page 373

Comments (0)

Please log in or register to comment.
Log in