## Abstract

Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

Show Summary Details# Discrete limit theorems for general Dirichlet series. III

#### Open Access

## Abstract

## About the article

## Citing Articles

*Analysis*, 2006, Volume 26, Number 3*Acta Applicandae Mathematicae*, 2007, Volume 97, Number 1-3, Page 99*Analysis*, 2007, Volume 26, Number 3, Page 373

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

A. Laurinčikas / R. Macaitienė

Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

Keywords: Dirichlet series; probability measure; random element; weak convergence

[1] P. Billingsley:Convergence of Probability Measures, Wiley, New York, 1968. Google Scholar

[2] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Erste Mitteilung.Acta Math., Vol. 54, (1930), pp. 1–35. CrossrefGoogle Scholar

[3] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Zweite Mitteilung,Acta Math., Vol. 54, (1932), pp. 1–55. Google Scholar

[4] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series IV”,Lith. Math. J., Vol. 43, No. 3, (2003), pp. 342–358;Lith. Math. J., Vol. 43, No. 3, (2003), pp. 281–294 (in Russian). http://dx.doi.org/10.1023/A:1026189318741CrossrefGoogle Scholar

[5] A. Laurinčikas:Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996. Google Scholar

[6] A. Laurinčikas: “Value distribution of general Dirichlet series”, In: B. Grigelionis et al. (Eds.):Probab. Theory and Math. Statistics; Proceedings of the seventh Vilnius, TEV, Vilnius, (1999), pp. 405–414. Google Scholar

[7] A. Laurinčikas: “Value distribution of general Dirichlet series. II”,Lith. Math. J., Vol. 41, No. 4, (2001), pp. 351–360. http://dx.doi.org/10.1023/A:1013860521038CrossrefGoogle Scholar

[8] A. Laurinčikas: “Limit theorems for general Dirichlet series”,Theory Stoch. Proc., Vol. 8, No. 24, (2002), pp. 256–268. Google Scholar

[9] A. Laurinčikas, W. Schwarz and J. Steuding: “Value distribution of general Dirichelet series. III”, In: A. Dubickas et al. (Eds.):Analytic and Probab. Methods in Number Theory. Proc. The Third Palanga Conf., TEV, Vilnius, (2002), pp. 137–156. Google Scholar

[10] A. Laurinčikas and R. Macaitienė: “Discrete limit theorems for general Dirichlet series. I,”Chebyshevski sbornik, Vol. 4, No. 3, (2003), pp. 156–170. Google Scholar

[11] R. Macaitienė: “Discrete limit theorems for general Dirichlet polynomials”,Lith. Math. J., Vol. 42 (spec. issue), (2002), pp. 705–709. Google Scholar

[12] R. Macaitienė: “Discrete limit theorems for general Dirichlet series. II”,Lith. Math. J., (to appear). Google Scholar

[13] H.L. Montgomery:Topics in multiplicative number theory, Springer, Berlin, 1971. Google Scholar

[14] E.M. Nikishin: “Dirichlet series with independent exponents and certain of their applications”,Matem.sb, Vol. 96, No. 1, (1975), pp. 3–40 (in Russian). Google Scholar

[15] Y.G. Sinai:Introduction to Ergodic Theory, Princeton Univ. Press, 1976. Google Scholar

[16] A.A. Tempelman:Ergodic Theorems on Groups, Mokslas, Vilnius, 1986. Google Scholar

**Published Online**: 2004-06-01

**Published in Print**: 2004-06-01

**Citation Information: **Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475231.

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Renata Macaitiene

[2]

Renata Macaitienė

[3]

Renata Macaitiene

## Comments (0)