## Abstract

Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

Show Summary Details# Discrete limit theorems for general Dirichlet series. III

#### Open Access

## Abstract

## About the article

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

A. Laurinčikas / R. Macaitienė

Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

Keywords: Dirichlet series; probability measure; random element; weak convergence

[1] P. Billingsley:Convergence of Probability Measures, Wiley, New York, 1968. Google Scholar

[2] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Erste Mitteilung.Acta Math., Vol. 54, (1930), pp. 1–35. CrossrefGoogle Scholar

[3] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Zweite Mitteilung,Acta Math., Vol. 54, (1932), pp. 1–55. Google Scholar

[4] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series IV”,Lith. Math. J., Vol. 43, No. 3, (2003), pp. 342–358;Lith. Math. J., Vol. 43, No. 3, (2003), pp. 281–294 (in Russian). http://dx.doi.org/10.1023/A:1026189318741CrossrefGoogle Scholar

[5] A. Laurinčikas:Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996. Google Scholar

[6] A. Laurinčikas: “Value distribution of general Dirichlet series”, In: B. Grigelionis et al. (Eds.):Probab. Theory and Math. Statistics; Proceedings of the seventh Vilnius, TEV, Vilnius, (1999), pp. 405–414. Google Scholar

[7] A. Laurinčikas: “Value distribution of general Dirichlet series. II”,Lith. Math. J., Vol. 41, No. 4, (2001), pp. 351–360. http://dx.doi.org/10.1023/A:1013860521038CrossrefGoogle Scholar

[8] A. Laurinčikas: “Limit theorems for general Dirichlet series”,Theory Stoch. Proc., Vol. 8, No. 24, (2002), pp. 256–268. Google Scholar

[9] A. Laurinčikas, W. Schwarz and J. Steuding: “Value distribution of general Dirichelet series. III”, In: A. Dubickas et al. (Eds.):Analytic and Probab. Methods in Number Theory. Proc. The Third Palanga Conf., TEV, Vilnius, (2002), pp. 137–156. Google Scholar

[10] A. Laurinčikas and R. Macaitienė: “Discrete limit theorems for general Dirichlet series. I,”Chebyshevski sbornik, Vol. 4, No. 3, (2003), pp. 156–170. Google Scholar

[11] R. Macaitienė: “Discrete limit theorems for general Dirichlet polynomials”,Lith. Math. J., Vol. 42 (spec. issue), (2002), pp. 705–709. Google Scholar

[12] R. Macaitienė: “Discrete limit theorems for general Dirichlet series. II”,Lith. Math. J., (to appear). Google Scholar

[13] H.L. Montgomery:Topics in multiplicative number theory, Springer, Berlin, 1971. Google Scholar

[14] E.M. Nikishin: “Dirichlet series with independent exponents and certain of their applications”,Matem.sb, Vol. 96, No. 1, (1975), pp. 3–40 (in Russian). Google Scholar

[15] Y.G. Sinai:Introduction to Ergodic Theory, Princeton Univ. Press, 1976. Google Scholar

[16] A.A. Tempelman:Ergodic Theorems on Groups, Mokslas, Vilnius, 1986. Google Scholar

**Published Online**: 2004-06-01

**Published in Print**: 2004-06-01

**Citation Information: **Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475231.

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

## Comments (0)