[1] C.H. Chu and J.M. Isidro: “Manifolds of tripotents in JB*-triples”, Math. Z., Vol. 233, (2000), pp. 741–754. http://dx.doi.org/10.1007/s002090050496CrossrefGoogle Scholar

[2] S. Dineen: The Schwarz lemma, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1989. Google Scholar

[3] L.A. Harris: “Bounded symmetric homogeneous domains in infinite dimensional spaces”, In: Proceedings on Infinite dimensional Holomorphy, Lecture Notes in Mathematics, Vol. 364, 1973, Springer-Verlag, Berlin, 1973, pp. 13–40. Google Scholar

[4] U. Hirzebruch: “Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume von Rang 1”, Math. Z., Vol. 90, (1965), pp. 339–354. http://dx.doi.org/10.1007/BF01112353CrossrefGoogle Scholar

[5] G. Horn: “Characterization of the predual and ideal structure of a JBW*-triple”, Math. Scan., Vol. 61, (1987), pp. 117–133. Google Scholar

[6] J.M. Isidro: The manifold of minimal partial isometries in the space
\(\mathcal{L}\)
(H,K) of bounded linear operators”, Acta Sci. Math. (Szeged), Vol. 66, (2000), pp. 793–808. Google Scholar

[7] J.M. Isidro and M. Mackey: “The manifold of finite rank projections in the algebra
\(\mathcal{L}\)
(H) of bounded linear operators”, Expo. Math., Vol. 20 (2), (2002), pp. 97–116. CrossrefGoogle Scholar

[8] J.M. Isidro and L. L. Stachó: “On the manifold of finite rank tripotents in JB*-triples”, J. Math. Anal. Appl., to appear. Google Scholar

[9] W. Kaup: “A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces”, Math. Z., Vol. 183, (1983), pp. 503–529. http://dx.doi.org/10.1007/BF01173928CrossrefGoogle Scholar

[10] W. Kaup: “Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension, I, II”, Math. Ann., Vol. 257, (1981), pp. 463–483 and Vol. 262, (1983), pp. 503–529. http://dx.doi.org/10.1007/BF01465868CrossrefGoogle Scholar

[11] W. Kaup: “On Grassmannians associated with JB*-triples”, Math. Z., Vol. 236, (2001), pp. 567–584. http://dx.doi.org/10.1007/PL00004842CrossrefGoogle Scholar

[12] O. Loos: Bounded symmetric domains and Jordan pairs Mathematical Lectures, University of California at Irvine, 1977. Google Scholar

[13] T. Nomura: “Manifold of primitive idempotents in a Jordan-Hilbert algebra”, J. Math. Soc. Japan, Vol. 45, (1993), pp. 37–58. http://dx.doi.org/10.2969/jmsj/04510037CrossrefGoogle Scholar

[14] T. Nomura: “Grassmann manifold of a JH-algebra”, Annals of Global Analysis and Geometry, Vol. 12, (1994), pp. 237–260. http://dx.doi.org/10.1007/BF02108300CrossrefGoogle Scholar

[15] H. Upmeier: Symmetric Banach manifolds and Jordan C
*-algebras, North Holland Math. Studies, Vol. 104, Amsterdam, 1985. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.