[1] D.E. Blair: Riemannian geometry of contact and symplectic manifolds, Progress in Math., Vol. 203, Birkhäuser, Boston, 2001. Google Scholar

[2] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou: “Contact metric manifolds satisfying a nullity condition”, Israel. J. Math., Vol. 91, (1995), pp. 189–214. Google Scholar

[3] E. Boeckx: “A full classification of contact metric (κ, μ)-spaces”, Ill. J. Math., Vol. 44, (2000), pp. 212–219. Google Scholar

[4] D. Chinea, M. de León and J.C. Marrero: “Stability of invariant foliations on almost contact manifolds”, Publ. Math. Debrecen, Vol. 43, (1993), pp. 41–52. Google Scholar

[5] D. Chinea and C. Gonzáles: An example of an almost cosymplectic homogeneous manifold, Lec. Notes Math., Vol. 1209, Springer, Berlin, 1986, pp. 133–142. Google Scholar

[6] L.A. Cordero, M. Fernández and M. De León: “Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures”, Atti Sem. Mat. Fis. Univ. Modena, Vol. 34, (1985–86) pp. 43–54. Google Scholar

[7] P. Dacko: “On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution”, Balkan. J. Geom. Appl., Vol. 5(2), (2000), pp. 47–60. Google Scholar

[8] P. Dacko and Z. Olszak: “On conformally flat almost cosymplectic manifolds with Kählerian leaves”, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 56, (1998), pp. 89–103. Google Scholar

[9] P. Dacko and Z. Olszak: “On almost cosymplectic (κ, μ, ν)-spaces”, in print. Google Scholar

[10] H. Endo: “On some properties of almost cosymplectic manifolds”, An. §tiint. Univ. “Al. I. Cuza” Ia§i, Mat., Vol. 42, (1996), pp. 79–94. Google Scholar

[11] H. Endo: “On some invariant submanifolds in certain almost cosymplectic manifolds”, An. §tiint. Univ. “Al. I. Cuza” Ia§i, Mat., Vol. 43, (1997), pp. 383–395. Google Scholar

[12] H. Endo: “Non-existence of almost cosymplectic manifolds satisfying a certain condition”, Tensor N. S., Vol. 63, (2002), pp. 272–284. Google Scholar

[13] S.I. Goldberg and K. Yano: “Integrability of almost cosymplectic structure”, Pacific J. Math., Vol. 31, (1969), pp. 373–382. Google Scholar

[14] Z. Olszak: “On almost cosymplectic manifolds”, Kodai Math. J., Vol. 4, (1981), pp. 239–250. http://dx.doi.org/10.2996/kmj/1138036371CrossrefGoogle Scholar

[15] Z. Olszak: “Curvature properties of quasi-Sasakian manifolds”, Tensor N.S., Vol. 38, (1982), pp. 19–28. Google Scholar

[16] Z. Olszak: “Almost cosymplectic manifolds with Kählerian leaves”, Tensor N.S., Vol. 46, (1987), pp. 117–124. Google Scholar

[17] S. Tanno: “Ricci curvatures of contact Riemannian manifolds”, Tôhoku Math. J., Vol. 40, (1988), pp. 441–448. Google Scholar

## Comments (0)