Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Vespri, Vincenzo / Marano, Salvatore Angelo


IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2018: 152.31

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 3, Issue 3

Issues

Volume 13 (2015)

Generalized interval exchanges and the 2–3 conjecture

Shmuel Friedland / Benjamin Weiss
Published Online: 2005-09-01 | DOI: https://doi.org/10.2478/BF02475916

Abstract

We introduce the notion of a generalized interval exchange $$\phi _\mathcal{A} $$ induced by a measurable k-partition $$\mathcal{A} = \left\{ {A_1 ,...,A_k } \right\}$$ of [0,1). $$\phi _\mathcal{A} $$ can be viewed as the corresponding restriction of a nondecreasing function $$f_\mathcal{A} $$ on ℝ with $$f_\mathcal{A} (0) = 0, f_\mathcal{A} (k) = 1$$ . A is called λ-dense if λ(A i∩(a, b))>0 for each i and any 0≤ a< b≤1. We show that the 2–3 Furstenberg conjecture is invalid if and only if there are 2 and 3 λ-dense partitions A and B of [0,1), such that $$f_\mathcal{A} \circ f_\mathcal{B} = f_\mathcal{B} \circ f_\mathcal{A} $$ . We give necessary and sufficient conditions for this equality to hold. We show that for each integer m≥2, such that 3∤2m+1, there exist 2 and 3 non λ-dense partitions A and B of [0,1), corresponding to the interval exchanges on 2m intervals, for which $$f_\mathcal{A} $$ and $$f_\mathcal{B} $$ commute.

Keywords: Generalized interval exchange; entropy; 2–3 conjecture

Keywords: 37A05; 37A35

  • [1] P. Arnoux, D.S. Ornstein and B. Weiss: “Cutting and stacking, interval exchanges and geometric models”, Israel J. Math., Vol. 50, (1985), pp. 160–168. Google Scholar

  • [2] H. Furstenberg: “Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation”, Math. Sys. Theory, Vol. 1, (1967), pp. 1–49. http://dx.doi.org/10.1007/BF01692494CrossrefGoogle Scholar

  • [3] B. Host: “Nombres normaux, entropie, translations”, Israel J. Math., Vol. 91, (1995), pp. 419–428. Google Scholar

  • [4] A. Johnson and D.J. Rudolph: “Convergence under ×q of ×p invariant measures on the circle”, Adv. Math., Vol. 115, (1995), pp. 117–140. http://dx.doi.org/10.1006/aima.1995.1052CrossrefGoogle Scholar

  • [5] G. Margulis: “Problems and conjectures in rigidity theory”, In: Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. Google Scholar

  • [6] W. Parry: “In general a degree two map is an automorphism”, Contemporary Math., Vol. 135, (1992), pp. 219–224. Google Scholar

  • [7] D. Rudolph: “×2 and ×3 invariant measures and entropy”, Ergodic Theory & Dynamical Systems, Vol. 10, (1990), pp. 395–406. Google Scholar

  • [8] Jean-Paul Thouvenot: private communication. Google Scholar

  • [9] P. Walters: An Introduction to Ergodic Theory, Springer-Verlag, 1982. Google Scholar

About the article

Published Online: 2005-09-01

Published in Print: 2005-09-01


Citation Information: Open Mathematics, Volume 3, Issue 3, Pages 412–429, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/BF02475916.

Export Citation

© 2005 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in