Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 7, Issue 4 (Dec 2009)

Issues

Statistical approximation properties of q-Baskakov-Kantorovich operators

Vijay Gupta / Cristina Radu
Published Online: 2009-10-31 | DOI: https://doi.org/10.2478/s11533-009-0055-y

Abstract

In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.

MSC: 41A25; 41A35

Keywords: q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness

  • [1] Abel U., Gupta V., An estimate of the rate of convergence of a Bezier variant of the Baskakov-Kantorovich operators for bounded variation functions, Demonstratio Math., 2003, 36, 123–136 Google Scholar

  • [2] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13, 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4Web of ScienceCrossrefGoogle Scholar

  • [3] Andrews G.E., Askey R., Roy R., Special functions, Cambridge Univ. Press., 1999 Google Scholar

  • [4] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal., (in press), DOI: 10.1016/j.na.2009.07.052 CrossrefGoogle Scholar

  • [5] Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251 (in Russian) Google Scholar

  • [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo Serie II, 2005, 76, 269–290 Google Scholar

  • [7] Doǧru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 2006, 68, 199–214 Google Scholar

  • [8] Dogru O., Duman O., Orhan C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar., 2003, 40, 359–371 Google Scholar

  • [9] Dogru O., Gupta V., Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 2005, 12, 415–422 Google Scholar

  • [10] Doǧru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 2006, 43, 51–63 http://dx.doi.org/10.1007/s10092-006-0114-8CrossrefGoogle Scholar

  • [11] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2006, 161, 187–197 http://dx.doi.org/10.4064/sm161-2-6CrossrefGoogle Scholar

  • [12] Ernst T., The history of q-calculus and a new method, U.U.D.M. Report 2000, 16, Uppsala, Departament of Mathematics, Uppsala University, 2000 Google Scholar

  • [13] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197, 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056CrossrefWeb of ScienceGoogle Scholar

  • [14] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 Google Scholar

  • [15] López-Moreno A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Math. Hungar., 2004, 104, 143–151 http://dx.doi.org/10.1023/B:AMHU.0000034368.81211.23CrossrefGoogle Scholar

  • [16] Lorentz G.G., Bernstein polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953 Google Scholar

  • [17] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Google Scholar

  • [18] Radu C., Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform., 2008, 17, 75–84 Google Scholar

  • [19] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 Google Scholar

About the article

Published Online: 2009-10-31

Published in Print: 2009-12-01


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-009-0055-y.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Mursaleen, Faisal Khan, and Asif Khan
Numerical Functional Analysis and Optimization, 2015, Volume 36, Number 9, Page 1178
[2]
Mohammad Mursaleen, Md Nasiruzzaman, and Ashirbayev Nurgali
Journal of Inequalities and Applications, 2015, Volume 2015, Number 1
[3]
Mei-Ying Ren and Xiao-Ming Zeng
Bulletin of the Korean Mathematical Society, 2013, Volume 50, Number 4, Page 1145
[4]
M. Mursaleen, Faisal Khan, and Asif Khan
Mathematical Methods in the Applied Sciences, 2015, Volume 38, Number 18, Page 5242
[5]
Purshottam N Agrawal, Harun Karsli, and Meenu Goyal
Journal of Inequalities and Applications, 2014, Volume 2014, Number 1, Page 441
[6]
P. N. Agrawal, Zoltán Finta, and A. Sathish Kumar
Results in Mathematics, 2015, Volume 67, Number 3-4, Page 365
[7]
Dilek Özden and Didem Arı
Journal of Inequalities and Applications, 2014, Volume 2014, Number 1, Page 249
[8]
M. Mursaleen, Faisal Khan, and Asif Khan
Applied Mathematics and Computation, 2014, Volume 232, Page 548
[9]
Mei-Ying Ren and Xiao-Ming Zeng
Journal of Inequalities and Applications, 2014, Volume 2014, Number 1, Page 10
[10]
Mohammad Mursaleen, Faisal Khan, Asif Khan, and Adem Kiliçman
Journal of Inequalities and Applications, 2013, Volume 2013, Number 1, Page 585
[11]
P. N. Agrawal and A. Sathish Kumar
Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, Volume 63, Number 1, Page 73
[12]
Vishnu Mishra, Kejal Khatri, and Lakshmi Mishra
Advances in Difference Equations, 2013, Volume 2013, Number 1, Page 345
[13]
Mei-Ying Ren and Xiao-Ming Zeng
Czechoslovak Mathematical Journal, 2013, Volume 63, Number 3, Page 805
[14]
M. Mursaleen and Asif Khan
Journal of Function Spaces and Applications, 2013, Volume 2013, Page 1
[15]
Mediha Örkcü
Journal of Inequalities and Applications, 2013, Volume 2013, Number 1, Page 324
[16]
D. K. Verma and P. N. Agrawal
Lobachevskii Journal of Mathematics, 2013, Volume 34, Number 2, Page 187
[17]
M. Mursaleen, Asif Khan, H.M. Srivastava, and K.S. Nisar
Applied Mathematics and Computation, 2013, Volume 219, Number 12, Page 6911
[18]
Mei-Ying Ren and Xiao-Ming Zeng
Journal of Inequalities and Applications, 2012, Volume 2012, Number 1, Page 212
[19]
Vijay Gupta, Taekyun Kim, and Sang-Hun Lee
Journal of Inequalities and Applications, 2012, Volume 2012, Number 1, Page 144
[20]
Mei-Ying Ren and Xiao-Ming Zeng
Abstract and Applied Analysis, 2012, Volume 2012, Page 1
[21]
Mediha Örkcü and Ogün Doğru
Nonlinear Analysis: Theory, Methods & Applications, 2012, Volume 75, Number 5, Page 2874
[22]
Mediha Örkcü and Ogün Doğru
Applied Mathematics and Computation, 2011, Volume 217, Number 20, Page 7913
[23]
Mediha Örkcü and Ogün Doğru
Applied Mathematics Letters, 2011, Volume 24, Number 9, Page 1588

Comments (0)

Please log in or register to comment.
Log in