## Abstract

In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.

Show Summary Details# Homological Mirror Symmetry for manifolds of general type

#### Open Access

## Abstract

## About the article

## Citing Articles

*International Mathematics Research Notices*, 2017, Volume 2017, Number 2, Page 566*International Mathematics Research Notices*, 2015, Volume 2015, Number 21, Page 11302*Journal de Mathématiques Pures et Appliquées*, 2014, Volume 102, Number 4, Page 702*Compositio Mathematica*, 2014, Volume 150, Number 04, Page 621*Успехи математических наук*, 2010, Volume 65, Number 5, Page 191*Manuscripta Mathematica*, 2013, Volume 141, Number 3-4, Page 391*Inventiones mathematicae*, 2012, Volume 189, Number 1, Page 149*Communications in Mathematical Physics*, 2011, Volume 304, Number 2, Page 411*Russian Mathematical Surveys*, 2011, Volume 65, Number 5, Page 987

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Anton Kapustin / Ludmil Katzarkov / Dmitri Orlov / Mirroslav Yotov

In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.

Keywords: Homological mirror Symmetry; K theory; Categories

[1] Abouzaid M., On the Fukaya categories of higher genus surfaces, Adv. Math., 2008, 217(3), 1192–1235 http://dx.doi.org/10.1016/j.aim.2007.08.011Web of ScienceCrossrefGoogle Scholar

[2] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math., 2006, 166(3), 537–582 http://dx.doi.org/10.1007/s00222-006-0003-4CrossrefGoogle Scholar

[3] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for weighted projective planes and their noncommutative deformations, preprint available at http://arxiv.org/abs/math/0404281 Google Scholar

[4] Bondal A., Kapranov M., Framed triangulated categories, Mat. Sb., 1990, 181(5), 669–683 (in Russian), English translation: Math. USSR-Sb., 1991, 70(1), 93–107 Google Scholar

[5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012 Google Scholar

[6] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-XCrossrefGoogle Scholar

[7] Candelas P., de la Ossa X., Green P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 1991, 359(1), 21–74 http://dx.doi.org/10.1016/0550-3213(91)90292-6CrossrefGoogle Scholar

[8] Cox D., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 Google Scholar

[9] Efimov A., Homological mirror symmetry for curves of higher genus, preprint available at http://arxiv.org/abs/0907.3903 Google Scholar

[10] Fukaya K., Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom., 2002, 11(3), 393–512 Google Scholar

[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory — anomaly and obstruction, preprint available at http://www.math.kyoto-u.ac.jp/fukaya/fukaya.html Google Scholar

[12] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Volume 1, Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003 Google Scholar

[13] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 Google Scholar

[14] Kapustin A., Orlov D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 2003, 48(1), 84–99 http://dx.doi.org/10.1016/S0393-0440(03)00026-3CrossrefGoogle Scholar

[15] Kapustin A., Orlov D., Lectures on mirror symmetry, derived categories, and D-branes, Russian Math. Surveys, 2004, 59(5), 907–940 http://dx.doi.org/10.1070/RM2004v059n05ABEH000772CrossrefGoogle Scholar

[16] Kawamata Y., D-equivalence and K-equivalence, J. Differential Geom., 2002, 61(1), 147–171 Google Scholar

[17] Kuznetsov A., Derived category of V 12 Fano threefolds, preprint available at http://arxiv.org/abs/math/0310008 Google Scholar

[18] Mukai S., Non-Abelian Brill Noether theory and Fano 3 folds, preprint available at http://arxiv.org/abs/alg-geom/9704015 Google Scholar

[19] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807CrossrefGoogle Scholar

[20] Orlov D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York), 1997, 84(5), 1361–1381 http://dx.doi.org/10.1007/BF02399195CrossrefGoogle Scholar

[21] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 2004, 246, Algebr. Geom. Metody, Svyazi i Prilozh., 240–262, English translation: Proc. Steklov Inst. Math., 2004, 3, 227–248 Google Scholar

[22] Orlov D., Mirror symmetry for higher genus curves, Lectures at University of Miami, January 2008, IAS, March 2008 Google Scholar

[23] Orlov D., Formal completions and idempotent completions of triangulated categories of singularities, preprint available at http://arxiv.org/abs/0901.1859 Web of ScienceGoogle Scholar

[24] Polishchuk A., Zaslow E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 1998, 2, 443–470 Google Scholar

[25] Seidel P., More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001 Google Scholar

[26] Seidel P., Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Press, Beijing, 2002 Google Scholar

[27] Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, 2008 Web of ScienceGoogle Scholar

[28] Seidel P., Homological mirror symmetry for the quartic surface, preprint available at http://arxiv.org/abs/math/0310414 Google Scholar

[29] Seidel P., Homological mirror symmetry for the genus two curve, preprint available at http://arxiv.org/abs/0812.1171. Google Scholar

**Published Online**: 2009-10-31

**Published in Print**: 2009-12-01

**Citation Information: **Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-009-0056-x.

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Dmytro Shklyarov

DOI: 10.1093/imrn/rnw039

[2]

Victor Przyjalkowski and Constantin Shramov

DOI: 10.1093/imrn/rnv024

[3]

Matthew Ballard, David Favero, and Ludmil Katzarkov

[4]

Robert Fisette and Alexander Polishchuk

[5]

Александр Иванович Ефимов and Aleksander Ivanovich Efimov

DOI: 10.4213/rm9389

[6]

Heinrich Hartmann

[7]

Ivan Smith

[8]

Ed Segal

[9]

Aleksander I Efimov

## Comments (0)