[1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1965 Google Scholar

[2] Akemann G., Fyodorov Y.V., Universal random matrix correlations of ratios of characteristic polynomials at the spectral edges, Nuclear Phys. B, 2003, 664(3), 457–476 http://dx.doi.org/10.1016/S0550-3213(03)00458-9CrossrefGoogle Scholar

[3] Baik J., Deift P., Strahov E., Products and ratios of characteristic polynomials of random Hermitian matrices. Integrability, topological solitons and beyond, J. Math. Phys., 2003, 44(8), 3657–3670 http://dx.doi.org/10.1063/1.1587875CrossrefGoogle Scholar

[4] Ben Arous G., Péché S., Universality of local eigenvalue statistics for some sample covariance matrices, Comm. Pure Appl. Math., 2005, 58(10), 1316–1357 http://dx.doi.org/10.1002/cpa.20070CrossrefGoogle Scholar

[5] Borodin A., Strahov E., Averages of characteristic polynomials in random matrix theory, Comm. Pure Appl. Math., 2006, 59(2), 161–253 http://dx.doi.org/10.1002/cpa.20092CrossrefGoogle Scholar

[6] Brézin E., Hikami S., Characteristic polynomials of random matrices, Comm. Math. Phys., 2000, 214(1), 111–135 http://dx.doi.org/10.1007/s002200000256CrossrefGoogle Scholar

[7] Brézin E., Hikami S., Characteristic polynomials of real symmetric random matrices, Comm. Math. Phys., 2001, 223(2), 363–382 http://dx.doi.org/10.1007/s002200100547CrossrefGoogle Scholar

[8] Brézin E., Hikami S., New correlation functions for random matrices and integrals over supergroups, J. Phys. A, 2003, 36(3), 711–751 http://dx.doi.org/10.1088/0305-4470/36/3/309CrossrefGoogle Scholar

[9] Deift, P.A., Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences, New York, 1999 Google Scholar

[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of Integral Transforms, vol. I, McGraw-Hill, New York, 1954 Google Scholar

[11] Feldheim O.N., Sodin S., A universality result for the smallest eigenvalues of certain sample covariance matrices, Geom. Funct. Anal., (in press), DOI:10.1007/s00039-010-0055-x Web of ScienceCrossrefGoogle Scholar

[12] Forrester P.J., Log-Gases and Random Matrices, book in preparation, www.ms.unimelb.edu.au/ matpjf/matpjf.html Google Scholar

[13] Fyodorov Y.V., Strahov E., An exact formula for general spectral correlation function of random Hermitian matrices, J. Phys. A, 2003, 36(12), 3202–3213 Google Scholar

[14] Götze F., Kösters H., On the second-order correlation function of the characteristic polynomial of a Hermitian Wigner matrix, Comm. Math. Phys., 2009, 285(3), 1183–1205 http://dx.doi.org/10.1007/s00220-008-0544-zWeb of ScienceCrossrefGoogle Scholar

[15] Kösters H., On the second-order correlation function of the characteristic polynomial of a real symmetric Wigner matrix, Electron. Commun. Prob., 2008, 13, 435–447 CrossrefGoogle Scholar

[16] Kösters H., Asymptotics of characteristic polynomials of Wigner matrices at the edge of the spectrum, Asymptot. Anal., (in press), preprint available at http://arxiv.org/abs/0805.3044 Google Scholar

[17] Kösters H., Characteristic polynomials of sample covariance matrices, J. Theoret. Probab., (in press), preprint available at http://arxiv.org/abs/0906.2763 Google Scholar

[18] Mehta M.L., Random Matrices, 3rd ed., Pure and Applied Mathematics, 142, Elsevier, Amsterdam, 2004 Google Scholar

[19] Olver F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974 Google Scholar

[20] Péché, S., Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields, 2009, 143(3–4), 481–516 http://dx.doi.org/10.1007/s00440-007-0133-7Web of ScienceCrossrefGoogle Scholar

[21] Soshnikov A., A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Statist. Phys., 2002, 108(5–6), 1033–1056 http://dx.doi.org/10.1023/A:1019739414239CrossrefGoogle Scholar

[22] Strahov E., Fyodorov Y.V., Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach, Comm. Math. Phys., 2003, 241(2–3), 343–382 Google Scholar

[23] Szegö G., Orthogonal Polynomials, 3rd ed., American Mathematical Society Colloquium Publications, 23, American Mathematical Society, Providence, 1967 Google Scholar

[24] Tao T., Vu V., Random covariance matrices: universality of local statistics of eigenvalues, preprint available at http://arxiv.org/abs/0912.0966 Google Scholar

[25] Vanlessen M., Universal behavior for averages of characteristic polynomials at the origin of the spectrum, Comm. Math. Phys., 2003, 253(3), 535–560 http://dx.doi.org/10.1007/s00220-004-1234-0CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.