[1] Augustynowicz A., Dzedzej Z., Gelman B.D., The solution set to BVP for some functional-differential inclusions, Set-Valued Anal., 1998, 6(3), 257–263 http://dx.doi.org/10.1023/A:1008618606813CrossrefGoogle Scholar

[2] Borwein J., Guirao A.J., Hájek P., Vanderwerff J., Uniformly convex functions on Banach spaces, Proc. Amer. Math. Soc., 2009, 137(3), 1081–1091 http://dx.doi.org/10.1090/S0002-9939-08-09630-5CrossrefGoogle Scholar

[3] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7CrossrefGoogle Scholar

[4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Longman Scientific & Technical, Harlow, 1993 Google Scholar

[5] DeVore R.A., Lorentz G.G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer, Berlin, 1993 Google Scholar

[6] Goebel K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002 Google Scholar

[7] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990 Google Scholar

[8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 Google Scholar

[9] Guirao A.J., Hájek P., On the moduli of convexity, Proc. Amer. Math. Soc., 2007, 135(10), 3233–3240 http://dx.doi.org/10.1090/S0002-9939-07-09030-2CrossrefWeb of ScienceGoogle Scholar

[10] Hájek P., Montesinos V., Zizler V., Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices, 2012, 6(2), 201–232 CrossrefWeb of ScienceGoogle Scholar

[11] Hörmander L., Sur la fonction dáppui des ensembles convexes dans un espace localement convexe, Ark. Math., 1955, 3(2), 181–186 http://dx.doi.org/10.1007/BF02589354CrossrefGoogle Scholar

[12] Krasnoselsky M.A., Zabreyko P.P., Geometric Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian) Google Scholar

[13] Lajara S., Pallarés A.J., Troyanski S., Moduli of convexity and smoothness of reflexive subspaces of L
1, J. Funct. Anal., 2011, 261(11), 3211–3225 http://dx.doi.org/10.1016/j.jfa.2011.07.024CrossrefGoogle Scholar

[14] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer, Berlin-New York, 1979 Google Scholar

[15] Linke Yu.É., Application of Michaelś theorem and its converse to sublinear operators, Math. Notes, 1992, 52(1), 680–686 http://dx.doi.org/10.1007/BF01247650CrossrefGoogle Scholar

[16] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974 Google Scholar

[17] Prykarpatska N.K., Blackmore D.L., Prykarpatsky A.K., Pytel-Kudela M., On the inf-type extremality solutions to Hamilton-Jacobi equations, their regularity properties, and some generalizations, Miskolc Math. Notes, 2003, 4(2), 153–180 Google Scholar

[18] Prykarpatsky A.K., A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem, preprint available at http://arxiv.org/abs/0902.4416 Google Scholar

[19] Prykarpatsky A.K., Blackmore D., A solution set analysis of a nonlinear operator equation using a Leray-Schauder type fixed point approach, Topology, 2009, 48(2–4) 182–185 http://dx.doi.org/10.1016/j.top.2009.11.017Web of ScienceCrossrefGoogle Scholar

[20] Prykarpats’kyi A.K., An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications, Ukrainian Math. J., 2008, 60(1), 114–120 http://dx.doi.org/10.1007/s11253-008-0046-3CrossrefGoogle Scholar

[21] Samoilenko A.M., Prykarpats’kyi A.K., Samoilenko V.H., Lyapunov-Schmidt approach to studying homoclinics splitting in weakly perturbed Lagrangian and Hamiltonian systems, Ukrainian Math. J., 2003, 55(1), 82–92 http://dx.doi.org/10.1023/A:1025072619144CrossrefGoogle Scholar

[22] Schwartz J.T., Nonlinear Functional Analysis, Gordon and Breach, New York-London-Paris, 1969 Google Scholar

## Comments (0)