Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2017: 161.82

Open Access
See all formats and pricing
More options …
Volume 11, Issue 10


Volume 13 (2015)

Tricyclic graphs with exactly two main eigenvalues

Xiaoxia Fan / Yanfeng Luo / Xing Gao
Published Online: 2013-07-20 | DOI: https://doi.org/10.2478/s11533-013-0283-z


An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.

MSC: 05C50

Keywords: Main eigenvalues; Tricyclic graphs; 2-walk (a; b)-linear graphs

  • [1] Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976 Google Scholar

  • [2] Cvetković D., Rowlinson P., Simic S., Eigenspaces of Graphs, Encyclopedia Math. Appl., 66, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9781139086547CrossrefGoogle Scholar

  • [3] Geng X., Li S., The spectral radius of tricyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl., 2008, 428(11–12), 2639–2653 http://dx.doi.org/10.1016/j.laa.2007.12.013CrossrefWeb of ScienceGoogle Scholar

  • [4] Hagos E.M., Some results on graph spectra, Linear Algebra Appl., 2002, 356(1–3), 103–111 http://dx.doi.org/10.1016/S0024-3795(02)00324-5CrossrefGoogle Scholar

  • [5] Hou Y., Tian F., Unicyclic graphs with exactly two main eigenvalues, Appl. Math. Lett., 2006, 19(11), 1143–1147 http://dx.doi.org/10.1016/j.aml.2005.11.025CrossrefWeb of ScienceGoogle Scholar

  • [6] Hou Y.P., Zhou H.Q., Trees with exactly two main eigenvalues, J. Nat. Sci. Hunan Norm. Univ., 2005, 28(2), 1–3 (in Chinese) Google Scholar

  • [7] Hu Z., Li S., Zhu C., Bicyclic graphs with exactly two main eigenvalues, Linear Algebra Appl., 2009, 431(10), 1848–1857 http://dx.doi.org/10.1016/j.laa.2009.06.022Web of ScienceGoogle Scholar

  • [8] Shi L., On graphs with given main eigenvalues, Appl. Math. Lett., 2009, 22(12), 1870–1874 http://dx.doi.org/10.1016/j.aml.2009.06.027CrossrefGoogle Scholar

About the article

Published Online: 2013-07-20

Published in Print: 2013-10-01

Citation Information: Open Mathematics, Volume 11, Issue 10, Pages 1800–1816, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0283-z.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in