[1] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13(4), 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4 [Web of Science] [Crossref]

[2] Agratini O., Statistical convergence of a non-positive approximation process, Chaos Solitons Fractals, 2011, 44(11), 977–981 http://dx.doi.org/10.1016/j.chaos.2011.08.003 [Crossref] [Web of Science]

[3] Altomare F., Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 2010, 5, 92–164

[4] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications, de Gruyter Stud. Math., 17, Walter de Gruyter, Berlin, 1994 http://dx.doi.org/10.1515/9783110884586 [Crossref]

[5] Anastassiou G.A., Duman O., Towards Intelligent Modeling: Statistical Approximation Theory, Intell. Syst. Ref. Libr., 14, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-3-642-19826-7 [Crossref]

[6] Bardaro C., Boccuto A., Dimitriou X., Mantellini I., Modular filter convergence theorems for abstract sampling-type operators, Appl. Anal. (in press), DOI: 10.1080/00036811.2012.738480 [Crossref]

[7] Bardaro C., Mantellini I., Multivariate moment type operators: approximation properties in Orlicz spaces, J. Math. Inequal., 2008, 2(2), 247–259 http://dx.doi.org/10.7153/jmi-02-22 [Crossref]

[8] Bardaro C., Mantellini I., A Korovkin theorem in multivariate modular function spaces, J. Funct. Spaces Appl., 2009, 7(2), 105–120 http://dx.doi.org/10.1155/2009/863153 [Crossref]

[9] Bardaro C., Musielak J., Vinti G., Nonlinear Integral Operators and Applications, De Gruyter Ser. Nonlinear Anal. Appl., 9, Walter de Gruyter, Berlin, 2003 http://dx.doi.org/10.1515/9783110199277 [Crossref]

[10] Belen C., Yildirim M., Statistical approximation in multivariate modular function spaces, Comment. Math., 2011, 51(1), 39–53

[11] Boccuto A., Candeloro D., Integral and ideals in Riesz spaces, Inform. Sci., 2009, 179(17), 2891–2902 http://dx.doi.org/10.1016/j.ins.2008.11.001 [Crossref]

[12] Boccuto A., Dimitriou X., Modular filter convergence theorems for Urysohn integral operators and applications, Acta Math. Sinica, 2013, 29(6), 1055–1066 http://dx.doi.org/10.1007/s10114-013-1443-6 [Crossref] [Web of Science]

[13] Boccuto A., Dimitriou X., Modular convergence theorems for integral operators in the context of filter exhaustiveness and applications, Mediterr. J. Math., 2013, 10(2), 823–842 http://dx.doi.org/10.1007/s00009-012-0199-z [Web of Science] [Crossref]

[14] Borsík J., Šalát T., On F-continuity of real functions, Tatra Mt. Math. Publ., 1993, 2, 37–42

[15] Demirci K., I-limit superior and limit inferior, Math. Commun., 2001, 6(2), 165–172

[16] Duman O., Özarslan M.A., Erkuş-Duman E., Rates of ideal convergence for approximation operators, Mediterr. J. Math., 2010, 7(1), 111–121 http://dx.doi.org/10.1007/s00009-010-0031-6 [Web of Science] [Crossref]

[17] Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32(1), 129–138 http://dx.doi.org/10.1216/rmjm/1030539612 [Crossref]

[18] Karakuş S., Demirci K., Duman O., Statistical approximation by positive linear operators on modular spaces, Positivity, 2010, 14(2), 321–334 http://dx.doi.org/10.1007/s11117-009-0020-9 [Crossref] [Web of Science]

[19] Katětov M., Product of filters, Comment. Math. Univ. Carolinae, 1968, 9(1), 173–189

[20] Komisarski A., Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl., 2008, 340(2), 770–779 http://dx.doi.org/10.1016/j.jmaa.2007.09.016 [Crossref]

[21] Korovkin P.P., On convergence of linear positive operators in the spaces of continuous functions, Doklady Akad. Nauk SSSR (N.S.), 1953, 90, 961–964 (in Russian)

[22] Kostyrko P., Šalát T., Wilczynski W., I-convergence, Real Anal. Exchange, 2000/01, 26(2), 669–685

[23] Kuratowski K., Topology I–II, Academic Press/PWN, New York-London/Warsaw, 1966/1968

[24] Lahiri B.K., Das P., I and I*-convergence in topological spaces, Math. Bohem., 2005, 130(2), 153–160

[25] Lorentz G.G., A contribution to the theory of divergent sequences, Acta Math., 1948, 80, 167–190 http://dx.doi.org/10.1007/BF02393648 [Crossref]

[26] Maligranda L., Korovkin theorem in symmetric spaces, Comment. Math. Prace Mat., 1987, 27(1), 135–140

[27] Mantellini I., Generalized sampling operators in modular spaces, Comment. Math. Prace Mat., 1998, 38, 77–92

[28] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer, Berlin, 1983

Published Online: 2013-07-20Published in Print: 2013-10-01Citation Information:Open Mathematics. Volume 11, Issue 10, Pages 1774–1784, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0288-7, July 2013© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)