Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

Numerical simulation of surface acoustic wave actuated cell sorting

Thomas Franke / Ronald Hoppe
  • Department of Mathematics, University of Houston, 669 P.G. Hoffman, Houston, TX, 77204-3008, USA
  • Institute of Mathematics, University of Augsburg, Universitätsstr. 14, 86159, Augsburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christopher Linsenmann / Kidist Zeleke
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/s11533-012-0165-9

Abstract

We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting approach.

MSC: 65M60; 74L15; 76Z05; 92C10; 92C50

Keywords: Surface acoustic wave actuated cell sorting; Biomedical micro-electro-mechanical system; Finite element immersed boundary method

  • [1] Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P., Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002 Google Scholar

  • [2] Antil H., Glowinski R., Hoppe R.H.W., Linsenmann C., Pan T.-W., Wixforth A., Modeling, simulation, and optimization of surface acoustic wave driven microfluidic biochips, J. Comput. Math., 2010, 28(2), 149–169 Web of ScienceGoogle Scholar

  • [3] Bekah D., Measurement of Viscoelastic Properties of Treated and Untreated Cancer Cells Using Passive Microrheology, MSc thesis, Ryerson University, Toronto, 2010, available at http://digitalcommons.ryerson.ca/dissertations/ Google Scholar

  • [4] Boffi D., Cavallini N., Gastaldi L., Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci., 2011, 21(12), 2523–2550 http://dx.doi.org/10.1142/S0218202511005829CrossrefWeb of ScienceGoogle Scholar

  • [5] Boffi D., Gastaldi L., A finite element approach for the immersed boundary method, Comput.&Structures, 2003, 81(8–11), 491–501 http://dx.doi.org/10.1016/S0045-7949(02)00404-2CrossrefGoogle Scholar

  • [6] Boffi D., Gastaldi L., Heltai L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 2007, 17(10), 1479–1505 http://dx.doi.org/10.1142/S0218202507002352CrossrefGoogle Scholar

  • [7] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, Berlin-Heidelberg-New York, 1991 Google Scholar

  • [8] Carey J.L., McCoy J.P., Keren D.F. (Eds.), Flow Cytometry in Clinical Diagnostics, 4th ed., American Society for Clinical Pathology Press, Chicago, 2007 Google Scholar

  • [9] Cui H.-H., Voldman J., He X.-F., Lim K.-M., Separation of particles by pulsed dielectrophoresis, Lab on a Chip, 2009, 9(16), 2306–2312 http://dx.doi.org/10.1039/b906202eCrossrefGoogle Scholar

  • [10] Eisenstein M., Cell sorting: divide and conquer, Nature, 2006, 441, 1179–1185 http://dx.doi.org/10.1038/4411179aWeb of ScienceCrossrefGoogle Scholar

  • [11] Eringen A.C., Maugin G.A., Electrodynamics of Continua I, Springer, Berlin-Heidelberg-New York, 1990 http://dx.doi.org/10.1007/978-1-4612-3236-0CrossrefGoogle Scholar

  • [12] Franke T., Braunmüller S., Frommelt T., Wixforth A., Sorting of solid and soft objects in vortices driven by surface acoustic waves, SPIE Proceedings, 2009, 7365, #73650O Google Scholar

  • [13] Franke T., Braunmüller S., Schmid L., Wixforth A., Weitz D.A., Surface acoustic wave actuated cell sorting (SAWACS), Lab on a Chip, 2010, 10(6), 789–794 http://dx.doi.org/10.1039/b915522hCrossrefGoogle Scholar

  • [14] Franke T., Hoppe R.H.W., Linsenmann C., Schmid L., Willbold C., Wixforth A., Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows, Comput. Vis. Sci., 2011, 14(4), 167–180 http://dx.doi.org/10.1007/s00791-012-0172-1CrossrefGoogle Scholar

  • [15] Gantner A., Hoppe R.H.W., Köster D., Siebert K.G., Wixforth A., Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Comput. Vis. Sci., 2007, 10(3), 145–161 http://dx.doi.org/10.1007/s00791-006-0040-yCrossrefGoogle Scholar

  • [16] Hawley T.S., Hawley R.G. (Eds.), Flow Cytometry Protocols, 2nd ed., Methods in Molecular Biology, 263, Humana Press, Totowa, 2004 Google Scholar

  • [17] Hoppe R.H.W., Linsenmann C., An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method, J. Comput. Phys., 2012, 231(14), 4676–4693 http://dx.doi.org/10.1016/j.jcp.2012.03.004Web of ScienceCrossrefGoogle Scholar

  • [18] Maugin G.A., Continuum Mechanics of Electromagnetic Solids, North-Holland Ser. Appl. Math. Mech., 33, North-Holland, Amsterdam, 1988 Google Scholar

  • [19] Pamme N., Continuous flow separations in microfluidic devices, Lab on a Chip, 2007, 7(12), 1644–1659 http://dx.doi.org/10.1039/b712784gCrossrefGoogle Scholar

  • [20] Peskin C.S., Numerical analysis of flood flow in the heart, J. Comput. Phys., 1977, 25(3), 220–252 http://dx.doi.org/10.1016/0021-9991(77)90100-0CrossrefGoogle Scholar

  • [21] Peskin C.S., The immersed boundary method, Acta Numer., 2002, 11, 479–517 http://dx.doi.org/10.1017/S0962492902000077CrossrefGoogle Scholar

  • [22] Petersson F., Åberg L., Swärd-Nilsson A.-M., Laurell T., Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation, Analytical Chemistry, 2007, 79(14), 5117–5123 http://dx.doi.org/10.1021/ac070444eCrossrefGoogle Scholar

  • [23] Qu B.-Y., Wu Z.-Y., Fang F., Bai Z.-M., Yang D.-Z., Xu S.-K., A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling, Analytical and Bioanalytical Chemistry, 2008, 392(7–8), 1317–1324 http://dx.doi.org/10.1007/s00216-008-2382-4CrossrefGoogle Scholar

  • [24] Seo J., Lean M.H., Kole A., Membrane-free microfiltration by asymmetrical inertial migration, Applied Physics Letters, 2007, 91(3), #033901 http://dx.doi.org/10.1063/1.2756272Web of ScienceCrossrefGoogle Scholar

  • [25] Shapiro H.M., Practical Flow Cytometry, John Wiley & Sons, Hoboken, 2003 http://dx.doi.org/10.1002/0471722731CrossrefGoogle Scholar

  • [26] Shi J., Huang H., Stratton Z., Huang Y., Huang T.J., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 2009, 9(23), 3354–3359 http://dx.doi.org/10.1039/b915113cCrossrefGoogle Scholar

  • [27] Shi J., Mao X., Ahmed D., Colletti A., Huang T.J., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab on a Chip, 2008, 8(2), 221–223 http://dx.doi.org/10.1039/b716321eCrossrefGoogle Scholar

  • [28] Skalak R., Chien S., Handbook of Bioengineering, McGraw-Hill, New York, 1987 Google Scholar

  • [29] Sklar L.A. (Ed.), Flow Cytometry for Biotechnology, Oxford University Press, New York, 2005 Google Scholar

  • [30] Tartar L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin, 2007 Google Scholar

  • [31] Valero A., Braschler T., Demierre N., Renaud P., A miniaturized continuous dielectrophoretic cell sorter and its applications, Biomicrofluidics, 2010, 4(2), #022807 CrossrefPubMedWeb of ScienceGoogle Scholar

  • [32] Zborowski M., Chalmers J.J., Magnetic cell sorting, In: Immunochemical Protocols, Methods in Molecular Biology, 295, Humana Press, New York, 2005, 291–300 http://dx.doi.org/10.1385/1-59259-873-0:291CrossrefGoogle Scholar

  • [33] Zhu J., Xuan X., Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels, Biomicrofluidics, 2011, 5(2), #024111 http://dx.doi.org/10.1063/1.3599883CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2013-04-01


Citation Information: Open Mathematics, Volume 11, Issue 4, Pages 760–778, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-012-0165-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Gergely Simon, Marco A. B. Andrade, Julien Reboud, Jose Marques-Hueso, Marc P. Y. Desmulliez, Jonathan M. Cooper, Mathis O. Riehle, and Anne L. Bernassau
Biomicrofluidics, 2017, Volume 11, Number 5, Page 054115

Comments (0)

Please log in or register to comment.
Log in