Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Vespri, Vincenzo / Marano, Salvatore Angelo


IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2018: 152.31

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

Volume 13 (2015)

Anisotropic interpolation error estimates via orthogonal expansions

Mingxia Li / Shipeng Mao
  • LSEC, Institute of Computational Mathematics, AMSS, Chinese Academy of Sciences, Zhongguancun Donglu 55, Beijing, 100190, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/s11533-013-0203-2

Abstract

We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.

MSC: 65N12; 65N15; 65N30; 65N50

Keywords: Error estimates; Anisotropic interpolation; Orthogonal expansions

  • [1] Acosta G., Apel T., Durán R.G., Lombardi A.L., Anisotropic error estimates for an interpolant defined via moments, Computing, 2008, 82(1), 1–9 http://dx.doi.org/10.1007/s00607-008-0259-1Web of ScienceCrossrefGoogle Scholar

  • [2] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999 Google Scholar

  • [3] Apel T., Dobrowolski M., Anisotropic interpolation with applications to the finite element method, Computing, 1992, 47(3–4), 277–293 http://dx.doi.org/10.1007/BF02320197CrossrefGoogle Scholar

  • [4] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994 Google Scholar

  • [5] Chen S., Shi D., Zhao Y., Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA J. Numer. Anal., 2004, 24(1), 77–95 http://dx.doi.org/10.1093/imanum/24.1.77CrossrefGoogle Scholar

  • [6] Chen S., Zheng Y., Mao S., Anisotropic error bounds of Lagrange interpolation with any order in two and three dimensions, Appl. Math. Comput., 2011, 217(22), 9313–9321 http://dx.doi.org/10.1016/j.amc.2011.04.015Web of ScienceCrossrefGoogle Scholar

  • [7] Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North-Holland, Amsterdam-New York-Oxford, 1978 Google Scholar

  • [8] Girault V., Raviart P.-A., Finite Element Methods for Navier-Stokes equations, Springer Ser. Comput. Math., 5, Springer, Berlin, 1986 Google Scholar

  • [9] Hannukainen A., Korotov S., Křížek M., The maximum angle condition is not necessary for convergence of the finite element method, Numer. Math., 2012, 120(1), 79–88 http://dx.doi.org/10.1007/s00211-011-0403-2Web of ScienceCrossrefGoogle Scholar

  • [10] Křížek M., On semiregular families of triangulations and linear interpolation, Appl. Math., 1991, 36(3), 223–232 Google Scholar

  • [11] Luke Y.L., The Special Functions and their Approximations I, Math. Sci. Eng., 53, Academic Press, New York-London, 1969 Google Scholar

  • [12] Mao S., Shi Z., Error estimates of triangular finite elements under a weak angle condition, J. Comput. Appl. Math., 2009, 230(1), 329–331 http://dx.doi.org/10.1016/j.cam.2008.11.008Web of ScienceCrossrefGoogle Scholar

  • [13] Sansone G., Orthogonal Functions, Dover, New York, 1991 Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2013-04-01


Citation Information: Open Mathematics, Volume 11, Issue 4, Pages 621–629, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0203-2.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in