## Abstract

We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).

Show Summary Details# Singular cardinals and strong extenders

#### Open Access

## Abstract

## About the article

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Arthur Apter / James Cummings / Joel Hamkins

We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).

Keywords: Strong cardinal; Extender; Inner model; Singular cardinal

[1] Cody B., Some Results on Large Cardinals and the Continuum Function, PhD thesis, CUNY Graduate Center, New York, 2012 Google Scholar

[2] Friedman S.-D., Honzik R., Easton’s theorem and large cardinals, Ann. Pure Appl. Logic, 2008, 154(3), 191–208 http://dx.doi.org/10.1016/j.apal.2008.02.001Web of ScienceCrossrefGoogle Scholar

[3] Gitik M., personal communication, 2012 Google Scholar

[4] Kanamori A., The Higher Infinite, Perspect. Math. Logic, Springer, Berlin, 1994 Google Scholar

[5] Mitchell W.J., Sets constructible from sequences of ultrafilters, J. Symbolic Logic, 1974, 39, 57–66 http://dx.doi.org/10.2307/2272343CrossrefGoogle Scholar

[6] Mitchell W., Hypermeasurable cardinals, In: Logic Colloquium’ 78, Mons, 1978, Stud. Logic Foundations Math., 97, North-Holland, Amsterdam-New York, 1979, 303–316 http://dx.doi.org/10.1016/S0049-237X(08)71631-8CrossrefGoogle Scholar

[7] Mitchell W.J., Beginning inner model theory, In: Handbook of Set Theory, Springer, Dordrecht, 2010, 1449–1495 http://dx.doi.org/10.1007/978-1-4020-5764-9_18CrossrefGoogle Scholar

**Published Online**: 2013-06-28

**Published in Print**: 2013-09-01

**Citation Information: **Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0265-1.

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

## Comments (0)