Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 11, Issue 9 (Sep 2013)

Issues

Singular cardinals and strong extenders

Arthur Apter
  • Department of Mathematics, Baruch College, City University of New York, New York, NY, 10010, USA
  • Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James Cummings / Joel Hamkins
  • Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
  • Department of Mathematics, College of Staten Island, City University of New York, Staten Island, NY, 10314, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-28 | DOI: https://doi.org/10.2478/s11533-013-0265-1

Abstract

We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).

MSC: 03E55; 03E35; 03E45

Keywords: Strong cardinal; Extender; Inner model; Singular cardinal

  • [1] Cody B., Some Results on Large Cardinals and the Continuum Function, PhD thesis, CUNY Graduate Center, New York, 2012 Google Scholar

  • [2] Friedman S.-D., Honzik R., Easton’s theorem and large cardinals, Ann. Pure Appl. Logic, 2008, 154(3), 191–208 http://dx.doi.org/10.1016/j.apal.2008.02.001Web of ScienceCrossrefGoogle Scholar

  • [3] Gitik M., personal communication, 2012 Google Scholar

  • [4] Kanamori A., The Higher Infinite, Perspect. Math. Logic, Springer, Berlin, 1994 Google Scholar

  • [5] Mitchell W.J., Sets constructible from sequences of ultrafilters, J. Symbolic Logic, 1974, 39, 57–66 http://dx.doi.org/10.2307/2272343CrossrefGoogle Scholar

  • [6] Mitchell W., Hypermeasurable cardinals, In: Logic Colloquium’ 78, Mons, 1978, Stud. Logic Foundations Math., 97, North-Holland, Amsterdam-New York, 1979, 303–316 http://dx.doi.org/10.1016/S0049-237X(08)71631-8CrossrefGoogle Scholar

  • [7] Mitchell W.J., Beginning inner model theory, In: Handbook of Set Theory, Springer, Dordrecht, 2010, 1449–1495 http://dx.doi.org/10.1007/978-1-4020-5764-9_18CrossrefGoogle Scholar

About the article

Published Online: 2013-06-28

Published in Print: 2013-09-01


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0265-1.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in