Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2017: 161.82

Open Access
See all formats and pricing
More options …
Volume 12, Issue 10


Volume 13 (2015)

A reverse engineering approach to the Weil representation

Anne-Marie Aubert / Tomasz Przebinda
Published Online: 2014-06-21 | DOI: https://doi.org/10.2478/s11533-014-0428-8


We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.

MSC: 22E45; 20C33; 22E46

Keywords: Weil representation; Oscillator representation; Metaplectic representation

  • [1] Aubert A.-M., Michel J., Rouqier R., Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 1996, 83, 353–397. http://dx.doi.org/10.1215/S0012-7094-96-08312-XCrossrefGoogle Scholar

  • [2] Cliff G., McNeilly D., Szechtman F., Weil representations of symplectic groups over rings, J. London Math. Soc. (2), 2000, 62(2), 423–436. http://dx.doi.org/10.1112/S0024610700001381CrossrefGoogle Scholar

  • [3] Dieudonné J., Éléments d’Analyse, Gauthier-Villars Éditeur, 1971. Google Scholar

  • [4] Folland G. B., Real analysis: Modern techniques and their applications, 2nd Edition. Books. Published: 26 October 2012. Google Scholar

  • [5] Gérardin P., The Weil representations associated to finite fields, J. of Algebra, 1977, 46, 54–101. http://dx.doi.org/10.1016/0021-8693(77)90394-5CrossrefGoogle Scholar

  • [6] Gurevich S., Hadani R., The geometric Weil representation. Selecta Math. N.S., 2007, 13, 465–481. http://dx.doi.org/10.1007/s00029-007-0047-3CrossrefGoogle Scholar

  • [7] Gurevich S., Hadani R., Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom., 2009, 7, 475–502. http://dx.doi.org/10.4310/JSG.2009.v7.n4.a4CrossrefGoogle Scholar

  • [8] Gurevich S., Hadani R., Howe R., Quadratic reciprocity and the sign of the Gauss sum via the finite the Weil representation. Int. Math. Res. Not. 2010, 3729–3745. Web of ScienceGoogle Scholar

  • [9] Gutiérrez L., Pantoja J., Soto-Andrade J., On generalized Weil representations over involutive rings, Contemporary Mathematics 544, 2011, 109–123. http://dx.doi.org/10.1090/conm/544/10751CrossrefGoogle Scholar

  • [10] Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie groups. Trans. Amer. Math. Soc, 1965, 119, 457–508. http://dx.doi.org/10.1090/S0002-9947-1965-0180631-0CrossrefGoogle Scholar

  • [11] Harish-Chandra, Harmonic analysis on reductive p-adic groups, 1970, Bull. Amer. Math. Soc., 76, 529–551. http://dx.doi.org/10.1090/S0002-9904-1970-12442-9CrossrefGoogle Scholar

  • [12] Hartshorne R., Algebraic Geometry. Springer-Verlag, 1977. Graduate Text in Mathematics: 52. Google Scholar

  • [13] Hörmander L., The analysis of linear partial differential operators I, Springer Verlag, 1983. http://dx.doi.org/10.1007/978-3-642-96750-4CrossrefGoogle Scholar

  • [14] Hörmander L., The analysis of linear partial differential operators III, Springer Verlag, 1985. Google Scholar

  • [15] Howe R., Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory, preprint, 1973. Google Scholar

  • [16] Howe R., θ-series and invariant theory, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, 275–285, Amer. Math. Soc., Providence, R.I., 1979. Google Scholar

  • [17] Howe R., Quantum mechanics and partial differential equations. J. Funct. Anal., 1980, 38, 188–254. http://dx.doi.org/10.1016/0022-1236(80)90064-6CrossrefGoogle Scholar

  • [18] Howe R., The oscillator semigroup, Proc. Symp. Pure Math., Amer. Math. Soc., 48, 61–132, 1988. http://dx.doi.org/10.1090/pspum/048/974332CrossrefGoogle Scholar

  • [19] Howe R., Transcending classical invariant theory, J. Amer. Math. Soc. 2, 1989, 2, 535–552. http://dx.doi.org/10.1090/S0894-0347-1989-0985172-6CrossrefGoogle Scholar

  • [20] Jacobson N., Basic Algebra II, W. H. Freeman and Company, San Francisco, 1980. Google Scholar

  • [21] Johnson R., Pantoja J., Weil representation of SL*(2, A) for a locally profinite ring A with involution, J. Lie Theory 14, 2004, 1–9. Google Scholar

  • [22] Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math., 1978, 44, 1–47. http://dx.doi.org/10.1007/BF01389900CrossrefGoogle Scholar

  • [23] Kirillov A. A., Elements of the theory of representations, Nauka, Moscow, 1978. Google Scholar

  • [24] Lion G., Vergne M., The Weil representation, Maslov index and theta series. Birkhéuser, Boston, 1980. Google Scholar

  • [25] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4), 1969, 2(1), 1–62. Google Scholar

  • [26] Müller D., Ricci F., Analysis of second order differential operators on Heisenberg group I. Invent. Math., 1990, 101, 545–582. http://dx.doi.org/10.1007/BF01231515CrossrefGoogle Scholar

  • [27] Nazarov M., Neretin Y., Olshanskii G., Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Sr. I Math. 1989, 309, 443–446 (in French). Google Scholar

  • [28] Neretin Y., Lectures on Gaussian integral operators and classical groups. EMS Series of Lectures in Mathematics European Mathematical Society (EMS), Zurich, 2011. http://dx.doi.org/10.4171/080Web of ScienceCrossrefGoogle Scholar

  • [29] Neretin Y., On a semigroup of operators in the boson Fock space. (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), 63–73, 96; translation in Funct. Anal. Appl. 24 (1990), 135–144. Google Scholar

  • [30] Neuhauser M., An explicit construction of the metaplectic representation over a finite field, Journal of Lie Theory 12, 2002, 15–30. Google Scholar

  • [31] Perrin P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, Non Commutative Harmonic Analysis and Lie Groups 880 (1981), 370–407. http://dx.doi.org/10.1007/BFb0090417CrossrefGoogle Scholar

  • [32] Prasad A., On character values and decomposition of the Weil representation associated to a finite abelian group, J. Analysis, 17, 2009, 73–86. Google Scholar

  • [33] Ranga Rao R., On some explicit formulas in the theory of Weil representations. Pacific Journal of Mathematics, 1993, 157, 335–371. http://dx.doi.org/10.2140/pjm.1993.157.335CrossrefGoogle Scholar

  • [34] Rudin W., Principles of mathematical analysis, McGraw-Hill, Inc, 1964. Google Scholar

  • [35] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962, 340, 309–321. Google Scholar

  • [36] Thomas T., Character of the Weil representation, 2008, 77(2), 221–239. Google Scholar

  • [37] Thomas T., The Weil representation, the Weyl transform, and transfer factor, 2009. Google Scholar

  • [38] Von Neumann J., Mathematical fundations of quantum mechanics, translated by Robert T. Beyer, Princeton University Press, 1955. Google Scholar

  • [39] Waldspurger J.-L., Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc., 2, 1989, 267–324. Google Scholar

  • [40] Wallach N., Real Reductive Groups I, Academic Press, 1988. Google Scholar

  • [41] Warner, G., Harmonic analysis on semisimple Lie groups. I, Springer-Verlag, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 188. http://dx.doi.org/10.1007/978-3-642-51640-5CrossrefGoogle Scholar

  • [42] Weil A., Sur certains groupes d’opérateurs unitaires, 1964, Acta Math., 111, 143–211. http://dx.doi.org/10.1007/BF02391012CrossrefGoogle Scholar

  • [43] Weil A., Basic Number Theory, Springer-Verlag, 1973. Classics in Mathematics. http://dx.doi.org/10.1007/978-3-662-05978-4CrossrefGoogle Scholar

About the article

Published Online: 2014-06-21

Published in Print: 2014-10-01

Citation Information: Open Mathematics, Volume 12, Issue 10, Pages 1500–1585, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-014-0428-8.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in