Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo


IMPACT FACTOR 2017: 0.831
5-year IMPACT FACTOR: 0.836

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.450
Source Normalized Impact per Paper (SNIP) 2017: 0.829

Mathematical Citation Quotient (MCQ) 2017: 0.32

ICV 2017: 161.82

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 12, Issue 4

Issues

Volume 13 (2015)

The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme

Mikhail Borovoi
  • Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristian González-Avilés
Published Online: 2014-01-17 | DOI: https://doi.org/10.2478/s11533-013-0363-0

Abstract

We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.

MSC: 20G35

Keywords: Reductive group scheme; Algebraic fundamental group

  • [1] Borovoi M., Abelian Galois Cohomology of Reductive Groups, Mem. Amer. Math. Soc., 132(626), American Mathematical Society, Providence, 1998 Google Scholar

  • [2] Borovoi M., Demarche C., Le groupe fondamental d’un espace homogène d’un groupe algébrique linéaire, preprint available at http://arxiv.org/abs/1301.1046 Google Scholar

  • [3] Borovoi M., Kunyavskiĭ B., Gille P., Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra, 2004, 276(1), 292–339 http://dx.doi.org/10.1016/j.jalgebra.2003.10.024CrossrefGoogle Scholar

  • [4] Colliot-Thélène J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., 2008, 618, 77–133 Google Scholar

  • [5] Conrad B., Reductive group schemes (SGA3 Summer School, 2011), available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf Google Scholar

  • [6] Demazure M., Grothendieck A. (Eds.), Schémas en Groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962–64 (SGA 3), re-edition available at http://www.math.jussieu.fr/~polo/SGA3; volumes 1 and 3 have been published: Documents Mathématiques, 7–8, Société Mathématique de France, Paris, 2011 Google Scholar

  • [7] Gelfand S.I., Manin Yu.I., Methods of Homological Algebra, 2nd ed., Springer Monogr. Math., Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-662-12492-5CrossrefGoogle Scholar

  • [8] González-Avilés C.D., Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255 http://dx.doi.org/10.1016/j.jalgebra.2012.07.031CrossrefWeb of ScienceGoogle Scholar

  • [9] González-Avilés C.D., Abelian class groups of reductive group schemes, Israel J. Math., 2013, 196(1), 175–214 http://dx.doi.org/10.1007/s11856-012-0147-4CrossrefGoogle Scholar

  • [10] González-Avilés C.D., Flasque resolutions of reductive group schemes, Cent. Eur. J. Math., 2013, 11(7), 1159–1176 http://dx.doi.org/10.2478/s11533-013-0235-7CrossrefGoogle Scholar

  • [11] Kottwitz R.E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 1984, 51(3), 611–650 http://dx.doi.org/10.1215/S0012-7094-84-05129-9CrossrefGoogle Scholar

  • [12] Merkurjev A.S., K-theory and algebraic groups, In: European Congress of Mathematics, II, Budapest, July 22–26, 1996, Progr. Math., 169, Birkhäuser, Basel, 1998, 43–72 Google Scholar

About the article

Published Online: 2014-01-17

Published in Print: 2014-04-01


Citation Information: Open Mathematics, Volume 12, Issue 4, Pages 545–558, ISSN (Online) 2391-5455, DOI: https://doi.org/10.2478/s11533-013-0363-0.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in