[1] Agarval R.P, O’Regan D., Difference equations in abstract spaces, J. Aust. Math. Soc. (Series A), 1998, 64 , 277-284CrossrefGoogle Scholar

[2] Agarwal R.P., Bohner M., Basic calculus on time scales and some of its applications, Result Math., 1999, 35, 3-22Google Scholar

[3] Agarwal R.P., Benchohra M., Seba D., On the applications of Measure of noncompactness to the existence of solutions for fractional difference equations, Results Math., 2009, 55, 221-230Google Scholar

[4] Ambrosetti A., Un teorema di esistenza por le equazioni differenziali negli spazi di Banach, Rend. Semin. Mat. Univ. Padova, 1967, 39, 349-361Google Scholar

[5] Asadollah A., Banaś J., Jallian Y., Existence of solutions for a class of nonlinear Volterrra singular integral equations, Comp. Math. Appl., 2011, 62, 1215-1227CrossrefGoogle Scholar

[6] Atici F.M., Guseinov G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 2002, 141, 75-99Google Scholar

[7] Banaś J, Goebel K, Measures of Noncompactness in Banach spaces, Lect. Notes Pure and Appl. Math., 60, Dekker, New York and Basel, 1980Google Scholar

[8] Bohner M., Peterson A., Dynamic Equations on Time Scales, An Introduction with Applications, Birkauser, Boston, 2001Google Scholar

[9] Bohner M., Peterson A. (Eds.), Advances in Dynamic Equations on Time Scales, Birkauser, Boston, 2003Google Scholar

[10] T. Cardinal, P. Rubbioni, On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl., 2005, 308, 620-635Google Scholar

[11] Cichoń M., On solutions of differential equations in Banach spaces, Nonlinear Anal., 2005, 60, 651-667Google Scholar

[12] Cichoń M., Kubiaczyk I., Sikorska-Nowak A., Yantir A., Weak solutions for the dynamic Cauchy problem in Banach spaces, Nonlinear Anal., 2009, 71, 2936-2943Google Scholar

[13] Cichoń ´ M., A note on Peano’s theorem on time scales, Appl. Math. Lett., 2010, 23, 1310-1313CrossrefWeb of ScienceGoogle Scholar

[14] Cichoń M., Kubiaczyk I., Sikorska-Nowak A., Yantir A., Existence of solutions of the dynamic Cauchy problem in Banach spaces, Demonstratio Math., 2012, 45(3), 561-573Google Scholar

[15] Darbo G., Punti uniti in transformazioni a condominio non compatto, Rend. Semin. Math. Univ. Padova, 1955, 24, 84-92Google Scholar

[16] DeBlasi F.S., On a property of unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 1977, 21, 259-262Google Scholar

[17] Gonzalez C., Meloda A.J., Set-contractive mappings and difference equations in Banach spaces, Comput. Math. Appl., 2003, 45, 1235-1243CrossrefGoogle Scholar

[18] Gori C., Obukhovskii V., Ragni M., Rubbioni P., On some properties of semilinear functional differential inclusions in abstract spaces, J. Concr. and Appl. Math., 2006, 4(1), 183-214Google Scholar

[19] Guseinov G. Sh., Integration on time scales, J. Math. Anal. Appl., 2003, 285, 107-127Google Scholar

[20] Hilger S., Ein Maßkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universit Rat Würzburg, 1988Google Scholar

[21] Hilger S., Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56Google Scholar

[22] Kaymakcalan B., Lakshmikantham V., Sivasundaram S., Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996Google Scholar

[23] Kubiaczyk I., Sikorska-Nowak A., Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals, Discuss. Math. Differ. Incl. Control Optim., 2009, 29, 113-126CrossrefGoogle Scholar

[24] Kuratowski K., Sur les espaces complets, Fund. Math., 1930, 15, 301-309Google Scholar

[25] Mönch H, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear.anal., 1980, 4, 985-999CrossrefGoogle Scholar

[26] O’Regan D., Measures of noncompactness, Darbo maps and differential equations in abstract spaces, Acta Math. Hungar., 1995, 69(3), 233-261CrossrefGoogle Scholar

[27] Papageorgiou N. S., Existence of solutions for hyperbolic differential inclusions in Banach spaces, Arch. Math. (Brno), 1992, 28, 205-213Google Scholar

[28] Rodriguez J., Nonlinear discrete Sturm-Liouville problems, J. Math. Anal. Appl., 2005, 308(1), 380-391Google Scholar

[29] Sikorska-Nowak A., Dynamic equations (Δm)(t) = f(t;x (t)) on time scales, Demonstratio Math., 2011, 44(2), 317-333Google Scholar

[30] Su H., Liu L., Wang X., Sturm-Liouville BVP in Banach space, Adv. in Difference Equ., 2011, # 2011:65Web of ScienceGoogle Scholar

[31] Topal S. G., Yantir A., Cetin E., Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale. J. Difference Equ. Appl., 2008, 14, 287-293CrossrefGoogle Scholar

[32] Xue X.,Nonlocal nonlinear differential equations with a measure of noncompactess in Banach spaces, Nonlinear Anal., 2009, 70, 2593-2601Google Scholar

[33] Yantir A., Kubiaczyk I., Sikorska-Nowak A., Nonlinear Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin, 2013, 20, 587-601 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.