[1] Cáceres J. , Hernando C., Mora M., Pelayo I. M., Puertas M. L., Boundary-type sets and product operators in graphs, In: VII Jornadas
de Matemática Discreta y Algorítmica, Castro Urdiales, Cantabria, Spain, July 2010
Google Scholar

[2] Cáceres J., Hernando C., Mora M., Pelayo I. M., Puertas M. L., Seara C., Wood D. R., On the metric dimension of Cartesian
product of graphs, SIAM J. Discrete Math., 2007, 21(2), 273–302
Web of ScienceGoogle Scholar

[3] Cˇ ižek N., Klavžar S., On the chromatic number of the lexicographic product and the Cartesian sum of graphs, Discrete Math.,
1994, 134(1-3), 17–24
Google Scholar

[4] Feng M., Wang K., On the metric dimension and fractional metric dimension of the hierarchical product of graphs, Appl. Anal.
Discrete Math., 2013, 7, 302–313
CrossrefWeb of ScienceGoogle Scholar

[5] Gallai T., Uber Extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1959, 2, 133–138 (in German)
Google Scholar

[6] Geller D., Stahl S., The chromatic number and other functions of the lexicographic product, J. Combin. Theory Ser. B, 1975, 19,
87–95
Google Scholar

[7] Hales R. S., Numerical invariants and the strong product of graphs, J. Combin. Theory Ser. B, 1973, 15, 146–155
Google Scholar

[8] Hammack R., Imrich W., Klavžar S., Handbook of Product Graphs, Second edition. With a foreword by Peter Winkler. Discrete
Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2011
Google Scholar

[9] Harary F., Melter R. A., On the metric dimension of a graph, Ars Combin., 1976, 2, 191–195
Google Scholar

[10] Jannesari M., Omoomi B., The metric dimension of the lexicographic product of graphs, Discrete Math. 2012, 312(22), 3349–3356
Google Scholar

[11] Jha P. K., Slutzki G., Independence numbers of product graphs, Appl. Math. Lett., 1994, 7(4), 91–94
CrossrefGoogle Scholar

[12] Johnson M. A., Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist., 1993, 3,
203–236
CrossrefGoogle Scholar

[13] Johnson M. A., Browsable structure-activity datasets, In: Advances in Molecular Similarity, R. Carbó–Dorca and P. Mezey, eds.,
JAI Press Connecticut, 1998, 153–170
Google Scholar

[14] Khuller S., Raghavachari B., Rosenfeld A., Landmarks in graphs, Discrete Appl. Math., 1996, 70, 217–229
Google Scholar

[15] Kratica J., Kovacˇevic´-Vujcˇic´ V., Cˇ angalovic´ M., Stojanovic´ M., Minimal doubly resolving sets and the strong metric dimension of
Hamming graphs, Appl. Anal. Discrete Math., 2012, 6, 63–71
Web of ScienceCrossrefGoogle Scholar

[16] Kuziak D., Yero I. G., Rodríguez-Velázquez J. A., On the strong metric dimension of corona product graphs and join graphs,
Discrete Appl. Math., 2013, 161(7-8), 1022–1027
Web of ScienceGoogle Scholar

[17] Melter R. A., Tomescu I., Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing, 1984, 25, 113–121
Google Scholar

[18] Oellermann O. R., Peters-Fransen J., The strong metric dimension of graphs and digraphs, Discrete Appl. Math., 2007, 155,
356–364
Web of ScienceGoogle Scholar

[19] Ore, O., Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Amer. Math. Soc., Providence, R.I., 1962
Google Scholar

[20] Rodríguez-Velázquez J. A., Kuziak D., Yero I. G., Sigarreta J. M., The metric dimension of strong product graphs, Carpathian J.
Math. (in press), preprint available at http://arxiv.org/abs/1305.0363
Google Scholar

[21] Saputro S., Simanjuntak R., Uttunggadewa S., Assiyatun H., Baskoro E., Salman A., Baˇca M., The metric dimension of the lexicographic
product of graphs, Discrete Math., 2013, 313(9), 1045–1051
Google Scholar

[22] Scheinerman E., Ullman D., Fractional Graph Theory. A rational approach to the theory of graphs. With a foreword by Claude
Berge, Wiley-Intersci. Ser. Discrete Math. Optim., A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997
Google Scholar

[23] Seb˝o A., Tannier E., On metric generators of graphs, Math. Oper. Res., 2004, 29(2), 383–393
CrossrefGoogle Scholar

[24] Slater P. J., Leaves of trees, In: Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory,
and Computing. Congr. Numer., 1975, 14, 549–559
Google Scholar

[25] Yero I. G., Kuziak D., Rodríguez-Velázquez J. A., On the metric dimension of corona product graphs, Comput. Math. Appl., 2011,
61(9), 2793–2798Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.